November 10 Math 3260 sec. 53 Fall 2025

4.8 Working with Coordinate Vectors

Suppose S is a subspace of a vector space V and B = {V,..., V} is
an ordered basis of S. Let T = {X;, Xz, ..., Xn} be any set of vectors
in S, and let Cr = {[¥]5, [X2]s, - . ., [Xm|s} be the set of vectors in Rk

consisting of the coordinate vectors of the elements of T with respect
to the basis B. Then T is linearly independent in V if and only if Cr is
linearly independent in R.

The power of this theorem is that it will allow us to translate a problem in
some finite dimensional vector space to R. Then we can use tools, like row
reduction, to bear.
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Example
Let S = {p,q,r}, where p(x) = 1 + 4x — 2x? + 3x3,
g(x)=1+3x-3x*+x% and r(x)=2+4x —8x% - 2x%

Determine whether S is linearly dependent or linearly independent in
P3. If linearly dependent, find a linear dependence relation.
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Let S = {p,q,r}, where p(x) = 1+ 4x — 2x? 4 3x3,

g(x) =1+3x—-3x2+x% and r(x)=2+4x —8x%—2x°.
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Let S = {p,q,r}, where p(x) = 1+ 4x — 2x? 4 3x3,
a(x)=1+3x-3x2+x% and r(x)=2+4x—8x%—2x5
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Chapter 5 Linear Transformations

In this chapter, we will consider a special class of functions called
linear transformations. The inputs and outputs that we’ll be
interested in will be vectors.

Let’s start with some notation and concepts related to functions more
generally.
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Domain, Codomain, Images, & Range

vvyyy

“f maps D into C”

f: D — C
~— N~ ~—
Rule  set of all inputs set where outputs live

D is the domain of the function.
C is where the outputs are. It’s called the codomain.
For x in D, if f(x) = y, we call y the image of x under f.

If Sis a subset of D, then the image of S under f is the collection
of all images for each x in S.

f(S)y={yeC|y=f(x)foratleastone x € S} = {f(x) | x € S}

f(D) is the range of f. This is the set of all actual images. We can
write f(D) = range(f).
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Codomain -vs- Range
Codomain = the set that contains the outputs

Range = the set of actual outputs

Example: Consider f : R — R defined by f(x) = e*. The codomain is
R because that’s how the function is being defined. But recall that

e* >0, forallreal x.
So the range is the interval (0, o).
Example: Consider g : (0, 00) — R defined by g(x) = In(x). For this

function
the codomain = R = the range.
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Onto, One-to-One, & Invertibility

f:D—C
‘PMM;'"D'\A\-Q C

If f(D) = C, that is, if the range is equal to the codomain, we say
that f is onto. In this case, we say

“f maps D onto C”~

If f maps D onto C, then foreach y € C
f(x) =y is consistent.

By consistent, we mean has at least one solution.
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Onto, One-to-One, & Invertibility
f:D—C
If for each y € range(f), the equation R Q@QJJ,_

f(x) =y RIS

has exactly one solution, we say that f is one-to-one.

If f is one-to-one, then for each y such that f(x) = y is consistent

f(x) =y has a unique solution.
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Onto, One-to-One, & Invertibility
f:D—C

If f maps D onto C and f is one-to-one, then we say that f is invertible.
If f: D — Cis invertible, then there is a corresponding inverse func-
tion denoted by f~' such that

(f~"o f)(x) = F'(f(x)) = x, foreach x € D, and

(fof")(x)=f(f'(x)) =x, foreachxc C.

f~1: C — D is the function defined by

=1 (y) = x where x is the unique solution of f(x) = y.

November 7, 2025 10/29



Example: Let T : R? — R? be defined by T(X) = AX where A = { ? 78 }

1. Find the images of X = (1,1), X = (—2,1), and X = (x1, X2).
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Example: Let T : R? — R? be defined by T(X) = AX where A = { ? 78 }

1. Find the images of X = (1,1), X = (—2,1), and X = (x1, X2).
2. What is range(T)? Does T map R? onto R??
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Example: Let T : R? — R? be defined by T(X) = AX where A = { ? 78 }

1. Find the images of X = (1,1), X = (—2,1), and X = (x1, X2).
2. What is range(T)? Does T map R? onto R??
3. Is T one-to-one?
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Example: Let T : R? — R? be defined by T(X) = AX where A = { (1) 78 }

1. Find the images of X = (1,1), X = (—2,1), and X = (x1, X2).
2. What is range(T)? Does T map R? onto R??

3. Is T one-to-one?

4. Is T invertible?
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Example: Let P : R? — R? be defined by P(X) = BX where B = [ 8 (1) }

1. Find the images of X = (1,1), X = (—2,1), and X = (x1, X2).

PO D) - [2 ?X(\,D =0, 17
L ) = (Oooﬂ SAIRE A

P, 30)) = [2 \O] (., %)= (o, %>
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Example: Let P : R? — R? be defined by P(X) = BX where B = { 8 ?
1. Find the images of X = (1,1), X = (—2,1), and X = (x1, X2).
2. What is range(P)? Does P map R? onto R??
r‘O./\SL (D) - geo\ { <G,\)> '
S w e Uty iy vMese
9 = Cerdd For Some
ceal \Q .
P isn't onto. No vector in R ? with a nonzero

first entry is in the range. For example
P(<x 1,x ,>)=<1,0> is not consistent.
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Example: Let P : R? — R? be defined by P(X) = BX where B = { 8 ? }

1. Find the images of X = (1,1), X = (—2,1), and X = (x1, X2).
2. What is range(P)? Does P map R? onto R??
3. Is P one-to-one?

PCL, DY = P(em)

P'\{ V\°\‘ o€ \¢\> On~e.

Two different inputs gave the same output.
That won't happen with a one to one function.
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Example: Let P : R? — R? be defined by P(X) = BX where B = {

o~

Find the images of X = (1,1), X = (—2,1), and X = (X1, X2).

What is range(P)? Does P map R? onto R2?
Is P one-to-one?
Is P invertible?

&) NS on e Coaen AN '

P is neither onto nor one to one, so
it's not invertible.
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5.2 Linear Transformations for R" to R™

Linear Transformation

A linear transformation from R" to R™ is a function T : R" —
R™ such that for each pair of vectors X and y in R" and for any
scalar ¢

1. T(X+y)=T(X)+ T(y), and

2. T(cX) = cT(X).

A function having vector spaces as a domain and codomain are called
transformations.

The two properties in this definition are what we mean by linear or
linearity. Functions that don’t have these properties are called
nonlinear.
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Example

Let T : R? — R® be defined by T((xy, x2)) = (x1X2,0, X + Xo).
Find the images of (0,0), (1,0), (0,1), (1,1) and (2, 2).
1. T({0,0)) =

2. T((1,0)) =
3. T((0,1)) =
4. T((1,1)) =

5. T((2,2)) =
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T:R? = R T((x1,%)) = (x1x2,0, X1 + X2)

1. 1s T((1,0) + (0,1)) = T((1,0)) + T({0,1))?

2. 1sT(2(1,1)) =2T((1,1))?
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Example

Let T: R® — R? be defined by T((x1,X2,X3)) = (X1 — Xo, Xo — X3).
Show that T is a linear transformation.
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T:R® = R? T((xy,X,x3)) = (X; — Xo, Xo — X3)
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Recall Properties of Matrix-Vector Product
If Ais an m x n matrix, X and y are vectors in R", and c is a scalar,
then

» AXis a vectorin R™.

> A(X +y) = AX + Ay, and

> A(cX) = cAX.

Lemma

If Ais an m x nmatrixand T : R"” — R™ is defined by T(X) = AX, then
T is a linear transformation.

Not only does the matrix-vector product define a linear transformation.
Turns out, every linear transformation from R" to R™ is a matrix-vector
product!
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Suppose that T : R" — R™ is a linear transformation. Then there is a
unique m x n matrix A, such that T (X) = AX for all X € R".

Furthermore, the matrix? A is the matrix whose column vectors are
Colj(A) = T (&)

where £ = {é,6,...,6,} is the standard basis for R".

aWe'll call A the standard matrix for the transformation 7.

The columns of A are the images of the standard unit vectors.

Ais unique if we are considering inputs and outputs relative to the standard
basis £.
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Example

Find the standard matrix for the linear transformation 7 : R2 — R3
given by
T(<X1 s X2>) = <X1 + 3Xo,2X1 + 4Xo, —2X2>.
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If T: R" — R™is a linear transformation, then

Remark: This can be used as a test to rule out that something is a
linear transformation. That is, if for some T : R” — R™, T(0,) # Om,
then T can’t be a linear transformation.

Caveat: This doesn'’t say that T(5n) — O by itself guarantees
linearity.
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Fundamental Subspaces: Range and Kernel

Let T : R" — R™ be a linear transformation, and let A be its standard
matrix. The range of T is defined by

range(T) = {T(X) | X € R"}.
and the kernel of T, denoted ker(T) is defined by
ker(T) = {)? €R"| T(X) = 6m} .

Moreover, range(T) is a subspace of R™, ker(T) is a subspace of R",
and

range(T) = CS(A), and ker(T)=N(A).

\. J

It follows from the FTLA that
dim(range(T)) + dim(ker(T)) = n.
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Example
Identify the range and kernel of T : R® — R? given by

T((x1,X2,X3)) = (2x1 + Xo — 2X3,2X1 + 3X2 + 6X3).
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T(<X1,X2,X3>) = <2X1 + Xo — 2X3,2X1 + 3Xo + 6X3>.
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T(<X1,X2,X3>) = <2X1 + Xo — 2X3,2X1 + 3Xo + 6X3>.

1. Is T onto?

2. Is T one to one?

3. Is T invertible?
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Range & Kernel Dimensions

Onto & One to One Indicators

Let T : R” — R™ be a linear transformation. Then
1. T is onto if and only if dim(range(T)) = m, and

2. T is one-to-one if and only if dim(ker(T)) = 0.

The second statement can be rephrased as saying that T is
one-to-one if and only if

—

T(X) =Om

has only the trivial solution, X = 0.
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Onto, One-to-One & Standard Matrix

Suppose T : R" — R™ is a linear transformation with standard matrix
A.

Since range(T) = CS(A), T is onto if and only if A has a pivot in
every row.

Since ker(T) = N(A), T is one-to-one if and only if all columns
of A are pivot columns.

J

Note that since dim(range(T)) + dim(ker(T)) = n, the only way for T to
be both onto and one-to-one is for m=n. Thatis, T: R" — R"and A
is a square matrix.
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Invertible Linear Transformations

Inverse of a Linear Transformation

Let T : R" — R" be a linear transformation with standard matrix
A. Then T is invertible if and only if A is an invertible matrix. In
this case,

for each X in R".

The standard matrix for T~ is the inverse of the standard matrix for T.
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