November 10 Math 3260 sec. 53 Fall 2025

4.8 Working with Coordinate Vectors

Theorem

Suppose S is a subspace of a vector space V and $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_k\}$ is an ordered basis of S. Let $T = \{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_m\}$ be any set of vectors in S, and let $C_T = \{[\vec{x}_1]_{\mathcal{B}}, [\vec{x}_2]_{\mathcal{B}}, \ldots, [\vec{x}_m]_{\mathcal{B}}\}$ be the set of vectors in R^k consisting of the coordinate vectors of the elements of T with respect to the basis \mathcal{B} . Then T is linearly independent in V if and only if C_T is linearly independent in R^k .

The power of this theorem is that it will allow us to translate a problem in some finite dimensional vector space to R^k . Then we can use tools, like row reduction, to bear.

Example

Let
$$S = \{p, q, r\}$$
, where $p(x) = 1 + 4x - 2x^2 + 3x^3$, $q(x) = 1 + 3x - 3x^2 + x^3$, and $r(x) = 2 + 4x - 8x^2 - 2x^3$.

Determine whether S is linearly dependent or linearly independent in \mathbb{P}_3 . If linearly dependent, find a linear dependence relation.

Use could conside we equation

$$C_1 p(x) + C_2 Q(x) + C_3 \Gamma(x) = Z(x)$$

Instead, well use coordinate vectors.

Let's use the ordered basis

 $B = \{1, x, x^2, x^3\}$
 $[p]_0 = (p_0, p_1, p_2, p_3)$ where

 $p(x) = p_0(1) + p_1 x + p_2 x^2 + p_3 x^3$

November 7 2025 2/25

November 7, 2025

Let $S = \{p, q, r\}$, where $p(x) = 1 + 4x - 2x^2 + 3x^3$, $q(x) = 1 + 3x - 3x^2 + x^3$, and $r(x) = 2 + 4x - 8x^2 - 2x^3$.

then we can consider $A\ddot{c} = \ddot{O}_4 \ddot{c} = (c_1, c_2, c_3)$ $A : \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & -2 \end{bmatrix}$ seet $\begin{bmatrix} 1 & 0 & -2 \\ 1 & 0 & -2 \end{bmatrix}$

so (p,q;r) is line dependent in P3.

From the rock (r) B = -2 fp & + 4 (9) B

November 7, 2025

Let
$$S = \{p, q, r\}$$
, where $p(x) = 1 + 4x - 2x^2 + 3x^3$,
 $q(x) = 1 + 3x - 3x^2 + x^3$, and $r(x) = 2 + 4x - 8x^2 - 2x^3$.
So $C(x) = -2e(x) + 4q(x)$
Variety: $-7e(x) + 4q(x) = -7e(x) + 4q($

A linear dependence relation for
$$dp, q, r$$
 is $2p(x) - 4q(x) + r(x) = Z(x)$.

Chapter 5 Linear Transformations

In this chapter, we will consider a special class of functions called **linear transformations**. The inputs and outputs that we'll be interested in will be vectors.

Let's start with some notation and concepts related to functions more generally.

Domain, Codomain, Images, & Range

"f maps D into C"

- D is the **domain** of the function.
- C is where the outputs are. It's called the codomain.
- For x in D, if f(x) = y, we call y the image of x under f.
- If S is a subset of D, then the image of S under f is the collection of all images for each x in S.

$$f(S) = \{ y \in C \mid y = f(x) \text{ for at least one } x \in S \} = \{ f(x) \mid x \in S \}$$

▶ f(D) is the **range** of f. This is the set of all actual images. We can write f(D) = range(f).

Codomain -vs- Range

Codomain = the set that contains the outputs

Range = the set of actual outputs

Example: Consider $f: R \to R$ defined by $f(x) = e^x$. The **codomain** is R because that's how the function is being defined. But recall that

 $e^x > 0$, for all real x.

So the **range** is the interval $(0, \infty)$.

Example: Consider $g:(0,\infty)\to R$ defined by $g(x)=\ln(x)$. For this function

the **codomain** = R = the **range**.

Onto, One-to-One, & Invertibility

$$f:D \to C$$
 f maps D into C

Onto

If f(D) = C, that is, if the range is equal to the codomain, we say that f is **onto**. In this case, we say

"f maps D onto C."

If f maps D onto C, then for each $y \in C$

f(x) = y is consistent.

By consistent, we mean has at least one solution.

Onto, One-to-One, & Invertibility

$$f: D \rightarrow C$$

One-to-One

If for each $y \in \text{range}(f)$, the equation

$$f(x) = y$$

has exactly one solution, we say that *f* is **one-to-one**.

If f is one-to-one, then for each y such that f(x) = y is consistent f(x) = y has a unique solution.

November 7, 2025

Onto, One-to-One, & Invertibility

$$f: D \rightarrow C$$

Invertible

If f maps D onto C and f is one-to-one, then we say that f is **invertible**. If $f:D\to C$ is invertible, then there is a corresponding **inverse function** denoted by f^{-1} such that

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$$
, for each $x \in D$, and

$$(f \circ f^{-1})(x) = f(f^{-1}(x)) = x$$
, for each $x \in C$.

 $f^{-1}: C \to D$ is the function defined by

$$f^{-1}(y) = x$$
 where x is the unique solution of $f(x) = y$.

Example: Let $T: R^2 \to R^2$ be defined by $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

1. Find the images of $\vec{x} = \langle 1, 1 \rangle$, $\vec{x} = \langle -2, 1 \rangle$, and $\vec{x} = \langle x_1, x_2 \rangle$.

A
$$\frac{1}{2}$$
 = $\frac{1}{2}$ T ((1,17) = A(1,17) = $\binom{0}{1}$ (1,17)

= $\binom{0}{1}$ (1,17)

= $\binom{0}{1}$ (1,17)

= $\binom{0}{1}$ (1,17)

T ((-2,17) = $\binom{0}{1}$ (-2,17) = $\binom{0}{1}$ (-2,27)

T ((x,x27) = $\binom{0}{1}$ (x,x27) = $\binom{0}{1}$ (x,x27)

Example: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

- 1. Find the images of $\vec{x} = \langle 1, 1 \rangle$, $\vec{x} = \langle -2, 1 \rangle$, and $\vec{x} = \langle x_1, x_2 \rangle$.
- 2. What is range(T)? Does T map R^2 onto R^2 ?

ronse (T) = { y e R² | T(x)= y is consistent?

For what y is
$$Ax = y$$
 consistent?

A rest Tz . A has a piret position

is both rows. $Ax = y$ is always

consistent. range (T) = R² and

T is onto.

Example: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

1. Find the images of $\vec{x}=\langle 1,1\rangle,\,\vec{x}=\langle -2,1\rangle,$ and $\vec{x}=\langle x_1,x_2\rangle.$

T is one to one.

- 2. What is range(T)? Does T map R^2 onto R^2 ?
- 3. Is *T* one-to-one?

equal
$$\frac{1}{2}$$
? When $A\overset{\cdot}{x} = \overset{\cdot}{y}$ is consistent, is the solution unique?

Since ref $(A) = Tz$, both columns are pivot columns. So $A\overset{\cdot}{x} = \overset{\cdot}{y}$ always has a unique solution.

4□ > 4□ > 4 = > 4 = > = 900

Example: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

- 1. Find the images of $\vec{x} = \langle 1, 1 \rangle$, $\vec{x} = \langle -2, 1 \rangle$, and $\vec{x} = \langle x_1, x_2 \rangle$.
- 2. What is range(T)? Does T map R^2 onto R^2 ?
- 3. Is *T* one-to-one?
- 4. Is *T* invertible?

T is invertible since T is onto and one to one.

Example: Let $P: R^2 \to R^2$ be defined by $P(\vec{x}) = B\vec{x}$ where $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

1. Find the images of $\vec{x}=\langle 1,1\rangle,\, \vec{x}=\langle -2,1\rangle,$ and $\vec{x}=\langle x_1,x_2\rangle.$

$$P(\langle 1, 1 \rangle) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \langle 1, 1 \rangle = \langle 0, 1 \rangle$$

$$P(\langle -2, 1 \rangle) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \langle -2, 1 \rangle = \langle 0, 1 \rangle$$

$$P(\langle \times_1, \times_2 \rangle) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \langle \times_1, \times_2 \rangle = \langle 0, \times_2 \rangle$$

Example: Let
$$P: \mathbb{R}^2 \to \mathbb{R}^2$$
 be defined by $P(\vec{x}) = B\vec{x}$ where $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

- 1. Find the images of $\vec{x} = \langle 1, 1 \rangle$, $\vec{x} = \langle -2, 1 \rangle$, and $\vec{x} = \langle x_1, x_2 \rangle$.
- 2. What is range(P)? Does P map R^2 onto R^2 ?

range (P) = Span {(0,1)},

Since every image

$$\vec{y} = (0, y) \text{ for some}$$

real y .

P isn't onto. No vector in R^2 with a nonzero first entry is in the range. For example $P(\langle x_1, x_2 \rangle) = \langle 1, 0 \rangle$ is not consistent.

Example: Let $P: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $P(\vec{x}) = B\vec{x}$ where $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

- 1. Find the images of $\vec{x}=\langle 1,1\rangle,\, \vec{x}=\langle -2,1\rangle,$ and $\vec{x}=\langle x_1,x_2\rangle.$
- 2. What is range(P)? Does P map R^2 onto R^2 ?
- 3. Is *P* one-to-one?

Two different inputs gave the same output. That won't happen with a one to one function.

Example: Let $P: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $P(\vec{x}) = B\vec{x}$ where $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

- 1. Find the images of $\vec{x} = \langle 1, 1 \rangle$, $\vec{x} = \langle -2, 1 \rangle$, and $\vec{x} = \langle x_1, x_2 \rangle$.
- 2. What is range(P)? Does P map R^2 onto R^2 ?
- 3. Is *P* one-to-one?
- 4. Is *P* invertible?

P is neither onto nor one to one, so it's not invertible.

5.2 Linear Transformations for R^n to R^m

Linear Transformation

A **linear transformation** from R^n to R^m is a function $T: R^n \to R^m$ such that for each pair of vectors \vec{x} and \vec{y} in R^n and for any scalar c

- 1. $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$, and
- $2. T(c\vec{x}) = cT(\vec{x}).$

A function having vector spaces as a domain and codomain are called **transformations**.

The two properties in this definition are what we mean by **linear** or **linearity**. Functions that don't have these properties are called nonlinear.

Example

Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(\langle x_1, x_2 \rangle) = \langle x_1 x_2, 0, x_1 + x_2 \rangle$.

Find the images of (0,0), (1,0), (0,1), (1,1) and (2,2).

- 1. $T(\langle 0,0\rangle) =$
- 2. $T(\langle 1,0\rangle) =$
- 3. T((0,1)) =
- **4**. T((1,1)) =
- 5. $T(\langle 2,2\rangle) =$

$$T:R^2 \rightarrow R^3 \quad T(\langle x_1,x_2 \rangle) = \langle x_1x_2,0,x_1+x_2 \rangle$$

1. Is
$$T(\langle 1,0\rangle + \langle 0,1\rangle) = T(\langle 1,0\rangle) + T(\langle 0,1\rangle)$$
?

2. Is
$$T(2(1,1)) = 2T((1,1))$$
?

Example

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T(\langle x_1, x_2, x_3 \rangle) = \langle x_1 - x_2, x_2 - x_3 \rangle$. Show that T is a linear transformation.

$$T:R^3\to R^2 \quad T(\langle x_1,x_2,x_3\rangle)=\langle x_1-x_2,x_2-x_3\rangle$$

Recall Properties of Matrix-Vector Product

If A is an $m \times n$ matrix, \vec{x} and \vec{y} are vectors in \mathbb{R}^n , and c is a scalar, then

- $ightharpoonup A\vec{x}$ is a vector in R^m .
- $ightharpoonup A(\vec{x}+\vec{y})=A\vec{x}+A\vec{y},$ and
- $ightharpoonup A(c\vec{x}) = cA\vec{x}.$

Lemma

If *A* is an $m \times n$ matrix and $T : \mathbb{R}^n \to \mathbb{R}^m$ is defined by $T(\vec{x}) = A\vec{x}$, then *T* is a linear transformation.

Not only does the matrix-vector product define a linear transformation. Turns out, **every** linear transformation from \mathbb{R}^n to \mathbb{R}^m is a matrix-vector product!

Theorem

Suppose that $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation. Then there is a unique $m \times n$ matrix A, such that $T(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

Furthermore, the matrix^a A is the matrix whose column vectors are

$$\operatorname{\mathsf{Col}}_{j}\left(A\right) = T\left(\vec{e}_{j}\right)$$

where $\mathcal{E} = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$ is the standard basis for R^n .

The **columns** of *A* are the images of the standard unit vectors.

A is *unique* if we are considering inputs and outputs relative to the standard basis \mathcal{E} .

^aWe'll call A the **standard matrix** for the transformation T.

Example

Find the standard matrix for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$T(\langle x_1,x_2\rangle)=\langle x_1+3x_2,2x_1+4x_2,-2x_2\rangle.$$

Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then

$$T(\vec{0}_n) = \vec{0}_m.$$

Remark: This can be used as a test to rule out that something is a linear transformation. That is, if for some $T: \mathbb{R}^n \to \mathbb{R}^m$, $T(\vec{0}_n) \neq \vec{0}_m$, then T can't be a linear transformation.

Caveat: This doesn't say that $T(\vec{0}_n) = \vec{0}_m$ by itself guarantees linearity.

Fundamental Subspaces: Range and Kernel

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be its standard matrix. The **range** of T is defined by

$$\mathsf{range}(T) = \{ T(\vec{x}) \mid \vec{x} \in R^n \} .$$

and the **kernel** of T, denoted ker(T) is defined by

$$\ker(T) = \left\{ \vec{x} \in R^n \mid T(\vec{x}) = \vec{0}_m \right\}.$$

Moreover, range(T) is a subspace of R^m , ker(T) is a subspace of R^n , and

$$range(T) = CS(A)$$
, and $ker(T) = N(A)$.

It follows from the FTLA that

$$\dim(\operatorname{range}(T)) + \dim(\ker(T)) = n.$$

Example

Identify the range and kernel of $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by

$$T(\langle x_1, x_2, x_3 \rangle) = \langle 2x_1 + x_2 - 2x_3, 2x_1 + 3x_2 + 6x_3 \rangle.$$

$$T(\langle x_1, x_2, x_3 \rangle) = \langle 2x_1 + x_2 - 2x_3, 2x_1 + 3x_2 + 6x_3 \rangle.$$

$$T(\langle x_1, x_2, x_3 \rangle) = \langle 2x_1 + x_2 - 2x_3, 2x_1 + 3x_2 + 6x_3 \rangle.$$

1. Is *T* onto?

2. Is T one to one?

3. Is *T* invertible?

Range & Kernel Dimensions

Onto & One to One Indicators

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then

- 1. T is onto if and only if dim(range(T)) = m, and
- 2. T is one-to-one if and only if dim(ker(T)) = 0.

The second statement can be rephrased as saying that T is one-to-one if and only if

$$T(\vec{x}) = \vec{0}_m$$

has only the trivial solution, $\vec{x} = \vec{0}_n$.

Onto, One-to-One & Standard Matrix

Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation with standard matrix A.

Since range(T) = CS(A), T is onto if and only if A has a pivot in every row.

Since $ker(T) = \mathcal{N}(A)$, T is one-to-one if and only if all columns of A are pivot columns.

Note that since $\dim(\operatorname{range}(T)) + \dim(\ker(T)) = n$, the only way for T to be both onto and one-to-one is for m = n. That is, $T : \mathbb{R}^n \to \mathbb{R}^n$ and A is a square matrix.

Invertible Linear Transformations

Inverse of a Linear Transformation

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A. Then T is invertible if and only if A is an invertible matrix. In this case,

$$T^{-1}(\vec{x}) = A^{-1}\vec{x}$$

for each \vec{x} in \mathbb{R}^n .

The standard matrix for T^{-1} is the inverse of the standard matrix for T.

November 7, 2025