November 11 Math 2306 sec. 52 Fall 2022

Section 16: Laplace Transforms of Derivatives and IVPs Transforms of Derivatives For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s),
$$

then

$$
\begin{aligned}
\mathscr{L}\left\{\frac{d y}{d t}\right\} & =s Y(s)-y(0), \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\} & =s^{2} Y(s)-s y(0)-y^{\prime}(0), \\
\mathscr{L}\left\{\frac{d^{3} y}{d t^{3}}\right\} & =s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0), \\
\vdots & \vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\} & =s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0) .
\end{aligned}
$$

Solve the IVP

An LR-series circuit has inductance $L=1 \mathrm{~h}$, resistance $R=10 \Omega$, and applied force $E(t)$ whose graph is given below. If the initial current $i(0)=0$, find the current $i(t)$ in the circuit.

LR Circuit Example
We determined that the IVP is

$$
\frac{d i}{d t}+10 i=E_{0} \mathscr{U}(t-1)-E_{0} \mathscr{U}(t-3), \quad i(0)=0
$$

Let $I(s)=\mathscr{L}\{i(t)\}$

$$
\begin{gathered}
\mathscr{L}\left\{i^{\prime}+10 i\right\}=\mathscr{L}\left\{E_{0} u(t-1)-E_{0} u(t \cdot 3)\right\} \\
\mathscr{L}\left\{i^{\prime}\right\}+10 \mathcal{L}\{i\}=E_{0} \mathscr{L}\{u(t-1)\}-E_{0} \mathcal{L}\{u(t-3)\} \\
s I(s)-i(0)+10 I(s)=E_{0} \frac{e^{-s}}{s}-E_{0} \frac{e^{-3 s}}{s} \\
0^{\prime \prime} \\
(s+10) I(s)=E_{0} \frac{e^{-s}}{s}-E_{0} \frac{e^{-3 s}}{s}
\end{gathered}
$$

$$
I(s)=E_{0} \frac{e^{-s}}{s(s+10)}-E_{0} \frac{e^{-3 s}}{s(s+10)}
$$

well decompose $\frac{1}{s(s+10)}=\frac{\frac{1}{10}}{s}-\frac{\frac{1}{10}}{s+10}$

$$
\begin{aligned}
& \frac{1}{s(s+10)}=\frac{A}{s}+\frac{B}{s+10} \Rightarrow \\
& \quad 1=A(s+10)+B s \\
& s=0 \quad 1=10 A \Rightarrow A=\frac{1}{10} \\
& s=-10 \quad 1=-10 B \Rightarrow B=\frac{-1}{10} \\
& I(s)=\frac{E_{0}}{10} e^{-s}\left(\frac{1}{s}-\frac{1}{s+10}\right)-\frac{E_{0}}{10} e^{-3 s}\left(\frac{1}{s}-\frac{1}{s+10}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{L}\{f(t-a) u(t-a)\}=e^{-a s} F(s) \\
& \mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a)
\end{aligned}
$$

we need $\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{1}{s+10}\right\}=1-e^{-10 t}=f(t)$

$$
I(s)=\frac{E_{0}}{10} e^{-s}\left(\frac{1}{s}-\frac{1}{s+10}\right)-\frac{E_{0}}{10} e^{-3 s}\left(\frac{1}{s}-\frac{1}{s+10}\right)
$$

The solution to th IVP $i(t)=\mathscr{L}^{-1}\{I(s)\}$

$$
i(t)=\frac{E_{0}}{10}\left(1-e^{-10(t-1)}\right) u(t-1)-\frac{E_{0}}{10}\left(1-e^{-10(t-3)}\right) u(t-3)
$$

Lat's write this using stacked notation.

$$
i(t)= \begin{cases}0, & 0 \leq t<1 \\ \frac{E_{0}}{10}-\frac{E_{0}}{10} e^{-10(t-1)}, & 1 \leq t<3 \\ \frac{E_{0}}{10} e^{-10(t-3)}-\frac{E_{0}}{10} e^{-10(t-1)}, & t \geqslant 3\end{cases}
$$

for $0 \leq t<1 \quad u(t-1)=0$ and $u(t-3)=0$
for $1 \leq t<3 \quad u(t-1)=1$ and $u(t-3)=0$
for $t \geqslant 3 \quad u(t-1)=1$ and $u(t-3)=1$

Solving a System

We can solve a system of ODEs using Laplace transforms. Here, we'll consider systems that are

- linear,
- having initial conditions at $t=0$, and
- constant coefficient.

Let's see it in action (i.e. with a couple of examples).

Example

Figure: If we label current i_{2} as $x(t)$ and current i_{3} as $y(t)$, we get the system of equations below. (Assuming $i_{1}(0)=0$.)

Solve the system of equations

$$
\begin{array}{ll}
\frac{d x}{d t}=-2 x-2 y+60, & x(0)=0 \\
\frac{d y}{d t}=-2 x-5 y+60, & y(0)=0
\end{array}
$$

$$
\begin{array}{ll}
\frac{d x}{d t}=-2 x-2 y+60, & x(0)=0 \\
\frac{d y}{d t}=-2 x-5 y+60, & y(0)=0
\end{array}
$$

Let $X(s)=\mathscr{L}\{x(t)\}$ and $Y(s)=\mathcal{L}\{y(t)\}$.

$$
\begin{aligned}
\mathscr{L}\left\{x^{\prime}\right\} & =\mathcal{L}\{-2 x-2 y+60\} \\
& =-2 \mathcal{L}\{x\}-2 \mathcal{L}\{y\}+60 \mathcal{L}\{1\} \\
s X(s)-x(0) & =-2 x(s)-2 \mathscr{Y}(5)+\frac{60}{5} \\
\mathscr{L}\left\{y^{\prime}\right\} & =-2 \mathcal{L}\{x\}-5 \mathscr{L}\{y\}+60 \mathcal{L}\{1\}
\end{aligned}
$$

$$
\begin{gathered}
s Y(s)-\underset{c_{1 \prime}^{\prime \prime}}{y(0)}=-2 X(s)-5 Y(s)+\frac{60}{s} \\
s X(s)+2 X(s)+2 Y(s)=\frac{60}{s} \\
2 X(s)+s Y(s)+5 Y(s)=\frac{60}{s} \\
(s+2) X+2 Y=\frac{60}{s} \\
2 X+(s+5) Y=\frac{60}{s}
\end{gathered}
$$

We'll pick up here and use Cramer's rule on Monday.

