November 12 Math 2306 sec. 52 Fall 2021

Section 17: Fourier Series: Trigonometric Series

Consider a function $f(x)$ defined on the interval $[-\pi, \pi]$. A series of the form

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

is called the Fourier series or Trigonometric series of f.

An Orthogonal Set of Functions on $[-\pi, \pi]$

Recall that the set of functions

$$
\{1, \cos x, \cos 2 x, \cos 3 x, \ldots, \sin x, \sin 2 x, \sin 3 x, \ldots\}
$$

is an orthogonal set on the interval $[-\pi, \pi]$.

Key Point: This means that if we take any two functions f and g from this set, then

$$
\int_{-\pi}^{\pi} f(x) g(x) d x=0 \quad \text { if } f \text { and } g \text { are different functions! }
$$

Fourier Series

Suppose $f(x)$ is defined for $-\pi<x<\pi$. We would like to know how to write f as a series in terms of sines and cosines.

Task: Find coefficients (numbers) $a_{0}, a_{1}, a_{2}, \ldots$ and b_{1}, b_{2}, \ldots such that ${ }^{1}$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

[^0]
Finding an Example Coefficient

Let's find the coefficient b_{4}.
Start with the series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$, and multiply both sides by $\sin (4 x)$.
$f(x) \sin (4 x)=\frac{a_{0}}{2} \sin (4 x)+\sum_{n=1}^{\infty}\left(a_{n} \cos n x \sin (4 x)+b_{n} \sin n x \sin (4 x)\right)$.
We integrated from $-\pi$ to π. Using the orthogonality property, we came to the conclusion that

$$
\int_{-\pi}^{\pi} f(x) \sin (4 x) d x=\pi b_{4}
$$

giving us a formula

$$
b_{4}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (4 x) d x
$$

Finding an Example Coefficient

Let's find the constant term $a_{0} / 2$. We'll follow the same procedure. Start by assuming f has the series representation.

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

- Multiply both sides of the equation by 1 ,
- integrate from $-\pi$ to π.

$$
\begin{aligned}
& \text { integrate from }-\pi \text { to } \pi \\
& \int_{-\pi}^{\pi} f(x) d x=\int_{-\pi}^{\pi} \frac{a_{0}}{2} d x+\sum_{n=1}^{\infty}\left[\int_{-\pi}^{\pi} a_{n} \cos (n x) d x+\int_{-\pi}^{\pi} b_{n} \sin (n x) d x\right]
\end{aligned}
$$

By orthogonality

$$
\int_{-\pi}^{\pi} \cos (n x) d x=0 \text { and } \int_{-\pi}^{\pi} \sin (n x) d x=0 \text { for all } n=1,2,3, \ldots
$$

Everything vanishes except

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) d x & =\int_{-\pi}^{\pi} \frac{a_{0}}{2} d x=\frac{a_{0}}{2} \int_{-\pi}^{\pi} d x \\
& =\frac{a_{0}}{2}\left[\left.x\right|_{-\pi} ^{\pi}=\frac{a_{0}}{2}[\pi-(-\pi)]\right. \\
& =\frac{a_{0}}{2}(2 \pi)=a_{0} \pi \\
\Rightarrow a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x
\end{aligned}
$$

Note:

$$
\frac{a_{0}}{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x
$$

Finding Fourier Coefficients

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

There's nothing special about b_{4} or a_{0} (aside from the factor of 2). In fact, for every $n=1,2,3, \ldots$

$$
\begin{gathered}
\int_{-\pi}^{\pi} \cos ^{2}(n x) d x=\pi, \quad \int_{-\pi}^{\pi} \sin ^{2}(n x) d x=\pi \\
\text { and } \quad \int_{-\pi}^{\pi} 1^{2} d x=2 \pi
\end{gathered}
$$

The orthogonality property of the set $\{1, \cos (n x), \sin (n x) \mid n=1,2, \ldots\}$ provides a set of formulas for the coefficients, a_{n}, b_{n}.

The Fourier Series of $f(x)$ on $(-\pi, \pi)$

The Fourier series of the function f defined on $(-\pi, \pi)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

Where

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad \text { and } \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

Example
Find the Fourier series of the piecewise defined function

$$
f(x)=\left\{\begin{array}{cc}
0, & -\pi<x<0 \\
x, & 0 \leq x<\pi
\end{array}\right.
$$

Let's compute the $a^{\prime} s+b^{\prime} s$.

$$
\begin{aligned}
a_{0}= & \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{0} 0 d x+\frac{1}{\pi} \int_{0}^{\pi} x d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x d x=\frac{1}{\pi}\left[\left.\frac{x^{2}}{2}\right|_{0} ^{\pi}=\frac{1}{\pi}\left[\frac{\pi^{2}}{2}-0\right]=\frac{\pi}{2}\right. \\
& a_{0}=\frac{\pi}{2}
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=\frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \cos (n x) d x+\frac{1}{\pi} \int_{0}^{\pi} x \cos (n x) d x \\
& =\frac{1}{\pi} \int_{0}^{\pi} x \cos (n x) d x \\
& =\frac{1}{\pi}\left[\left.\frac{x}{n} \sin (n x)\right|_{0} ^{\pi}-\int_{0}^{\pi} \frac{1}{n} \sin (n x) d x\right] \\
& u=x, \quad d u=d x \\
& d V=\cos (n x) d x \\
& V=\frac{1}{n} \sin (n x) \\
& =\frac{1}{\pi}\left[\left.\frac{x}{n} \sin (n x)\right|_{0} ^{\pi}+\left.\frac{1}{n^{2}} \cos (n x)\right|_{0} ^{\pi}\right. \\
& =\frac{1}{\pi}\left[\frac{\pi}{n} \sin (n \pi)-\frac{0}{n} \sin (0)+\frac{1}{n^{2}} \cos (n \pi)-\frac{1}{n^{2}} \cos (0)\right] \\
& \sin (n \pi)=0, \quad \cos (n \pi)=\left\{\begin{array}{cc}
-1, & n \text {-odd } \\
1, & n \text {-even }
\end{array}=(-1)^{n}\right.
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi}\left[\frac{1}{n^{2}}(-1)^{n}-\frac{1}{n^{2}}\right]=\frac{(-1)^{n}-1}{n^{2} \pi} \\
& a_{n}=\frac{(-1)^{n}-1}{n^{2} \pi}
\end{aligned} \quad \begin{aligned}
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x=\frac{1}{\pi} \int_{-\pi}^{0} 0 \cdot \sin (n x) d x+\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x \\
&=\frac{1}{\pi} \int_{0}^{\pi} x \sin (n x) d x \quad \\
& \quad \text { by } \operatorname{Pants} \\
& u=x \quad d u=d x \\
& \frac{1}{\pi}\left[\frac{-x}{n} \cos (n x)\right)_{0}^{\pi}+\int_{0}^{\pi} \frac{1}{n} \cos (n x) d x d v=\sin (n x) d x \\
& \quad v=\frac{-1}{n} \operatorname{Cos}(n x)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left[\frac{-x}{n} \cos (n x)+\left.\frac{1}{n^{2}} \sin (n x)\right|_{0} ^{\pi}\right. \\
& =\frac{1}{\pi}\left[\frac{-\pi}{n} \cos (n \pi)+\frac{1}{n^{2}} \sin (n \pi)-\frac{-0}{n} \cos (0)-\frac{1}{n^{2}} \sin (0)\right] \\
& =\frac{1}{\pi}\left[\frac{-\pi}{n}(-1)^{n}\right]=\frac{-(-1)^{n}}{n}=\frac{(-1)^{n+1}}{n} \\
& b_{n}=\frac{(-1)^{n+1}}{n} \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=\frac{\pi}{2}, a_{n}=\frac{(-1)^{n}-1}{n^{2} \pi} \\
& f(x)=\frac{\pi}{4}+\sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{n^{2} \pi} \cos (n x)+\frac{(-1)^{n+1}}{n} \sin (n x)
\end{aligned}
$$

This is the Fourier series for

$$
f(x)=\left\{\begin{array}{cc}
0, & -\pi<x<0 \\
x, & 0 \leq x<\pi
\end{array}\right.
$$

An Orthogonal Set of Functions on $[-p, p]$

This set can be generalized by using a simple change of variables $t=\frac{\pi x}{p}$ to obtain the orthogonal set on $[-p, p]$

$$
\left\{1, \cos \frac{n \pi x}{p}, \left.\sin \frac{m \pi x}{p} \right\rvert\, n, m= \pm 1, \pm 2, \ldots\right\}
$$

There are many interesting and useful orthogonal sets of functions (on appropriate intervals). What follows is readily extended to other such (infinite) sets.

Fourier Series on an interval $(-p, p)$

The set of functions $\left\{1, \cos \left(\frac{n \pi x}{p}\right), \left.\sin \left(\frac{m \pi x}{p}\right) \right\rvert\, n, m \geq 1\right\}$ is orthogonal on $[-p, p]$. Moreover, we have the properties
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) d x=0$ and $\int_{-p}^{p} \sin \left(\frac{m \pi x}{p}\right) d x=0$ for all $n, m \geq 1$,
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) \sin \left(\frac{m \pi x}{p}\right) d x=0$ for all $m, n \geq 1$,
$\int_{-p}^{p} \cos \left(\frac{n \pi x}{p}\right) \cos \left(\frac{m \pi x}{p}\right) d x=\left\{\begin{array}{ll}0, & m \neq n \\ p, & n=m\end{array}\right.$,
$\int_{-p}^{p} \sin \left(\frac{n \pi x}{p}\right) \sin \left(\frac{m \pi x}{p}\right) d x=\left\{\begin{array}{ll}0, & m \neq n \\ p, & n=m\end{array}\right.$.

Fourier Series on an interval ($-p, p$)

The orthogonality relations provide for an expansion of a function f defined on $(-p, p)$ as

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{p}\right)+b_{n} \sin \left(\frac{n \pi x}{p}\right)\right)
$$

where

$$
\begin{aligned}
& a_{0}=\frac{1}{p} \int_{-p}^{p} f(x) d x, \\
& a_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x, \quad \text { and } \\
& b_{n}=\frac{1}{p} \int_{-p}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x
\end{aligned}
$$

Find the Fourier series of f
f is defined on

$$
f(x)=\left\{\begin{array}{lr}
1, & -1<x<0 \tag{-p,p}\\
-2, & 0 \leq x<1
\end{array}\right.
$$

$$
p=2
$$

$$
\begin{aligned}
& a_{0}=\frac{1}{1} \int_{-1}^{1} f(x) d x=\int_{-1}^{0} 1 d x+\int_{0}^{1}(-2) d x \\
&=\left.x\right|_{-1} ^{0}-\left.2 x\right|_{0} ^{1}=(0-(-1))-2(1-0)=-1 \\
& a_{0}=-1 \\
& a_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \cos \left(\frac{n \pi x}{1}\right) d x \\
&=\int_{-1}^{0} \cos (n \pi x) d x+\int_{0}^{1}(-2) \cos (n \pi x) d x \\
&=\left.\frac{1}{n \pi} \sin (n \pi x)\right|_{-1} ^{0}-\left.\frac{2}{n \pi} \sin (n \pi x)\right|_{0} ^{1}
\end{aligned}
$$

$$
\begin{gathered}
=\frac{1}{n \pi}(\sin 0-\sin (-n \pi))-\frac{2}{n \pi}(\sin (n \pi)-\sin (0))=0 \\
a_{n}=0 \quad \text { for } n=1,2,3, \ldots
\end{gathered}
$$

$$
\begin{aligned}
b_{n} & =\frac{1}{1} \int_{-1}^{1} f(x) \sin \left(\frac{n \pi x}{1}\right) d x \\
& =\int_{-1}^{0} \sin (n \pi x) d x+\int_{0}^{1}(-2) \sin (n \pi x) d x \\
& =\left.\frac{-1}{n \pi} \cos (n \pi x)\right|_{-1} ^{0}+\left.\frac{2}{n \pi} \cos (n \pi x)\right|_{0} ^{1} \\
& =\frac{-1}{n \pi}[\cos \theta-\cos (-n \pi)]+\frac{2}{n \pi}[\cos (n \pi)-\cos \theta]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-1}{n \pi}\left(1-(-1)^{n}\right)+\frac{2}{n \pi}\left((-1)^{n}-1\right) \\
& =\frac{-1}{n \pi}+\frac{(-1)^{n}}{n \pi}+\frac{2(-1)^{n}}{n \pi}-\frac{2}{n \pi} \\
& b_{n}=\frac{3\left((-1)^{n}-1\right)}{n \pi} \\
& a_{0}=-1, \quad a_{n}=0 \quad n \geqslant 1 \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x)+b_{n} \sin (n \pi x)
\end{aligned}
$$

dence

$$
f(x)=\frac{-1}{2}+\sum_{n=1}^{\infty} \frac{3\left((-1)^{n}-1\right)}{n \pi} \sin (n \pi x)
$$

$$
f(x)=\left\{\begin{array}{cc}
1, & -1<x<0 \\
-2, & 0 \leq x<1
\end{array}\right.
$$

[^0]: ${ }^{1}$ We'll write $\frac{a_{0}}{2}$ as opposed to a_{0} purely for convenience.

