November 12 Math 2306 sec. 52 Fall 2021

Section 17: Fourier Series: Trigonometric Series

Consider a function f(x) defined on the interval $[-\pi, \pi]$. A series of the form

$$f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n\cos nx+b_n\sin nx\right).$$

イロト イポト イヨト イヨト

November 11, 2021

1/42

is called the Fourier series or Trigonometric series of f.

An Orthogonal Set of Functions on $[-\pi, \pi]$

Recall that the set of functions

```
\{1, \cos x, \cos 2x, \cos 3x, \ldots, \sin x, \sin 2x, \sin 3x, \ldots\}
```

is an orthogonal set on the interval $[-\pi, \pi]$.

Key Point: This means that if we take any two functions *f* and *g* **from this set**, then

 $\int_{-\pi}^{\pi} f(x)g(x) \, dx = 0 \quad \text{if } f \text{ and } g \text{ are different functions!}$

November 11, 2021 2/42

Fourier Series

Suppose f(x) is defined for $-\pi < x < \pi$. We would like to know how to write *f* as a series **in terms of sines and cosines**.

Task: Find coefficients (numbers) a_0 , a_1 , a_2 ,... and b_1 , b_2 ,... such that¹

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$

¹We'll write $\frac{a_0}{2}$ as opposed to a_0 purely for convenience $a_0 \leftarrow a_0 \leftarrow$

Finding an Example Coefficient

Let's find the coefficient b_4 .

Start with the series $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, and multiply both sides by sin(4x).

$$f(x)\sin(4x) = \frac{a_0}{2}\sin(4x) + \sum_{n=1}^{\infty} (a_n \cos nx \sin(4x) + b_n \sin nx \sin(4x)).$$

We integrated from $-\pi$ to π . Using the orthogonality property, we LGrund in Contract came to the conclusion that

$$\int_{-\pi}^{\pi} f(x) \sin(4x) \, dx = \pi b_4$$

giving us a formula

$$b_4 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(4x) \, dx.$$

Finding an Example Coefficient

Let's find the constant term $a_0/2$. We'll follow the same procedure. Start by assuming *f* has the series representation.

$$f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n\cos nx+b_n\sin nx\right).$$

Multiply both sides of the equation by 1,

• integrate from $-\pi$ to π . $\int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} \frac{f^{n} G_{0}}{2} dx + \int_{-\pi}^{\infty} \int_{-\pi}^{\pi} G_{0} G_{0} G_{0} (nx) dx + \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} G_{0} (nx) dx = \int_{-\pi}^{\pi} G_{0} (nx) dx = 0$ For all $n = 1, 2, 3, \cdots$ $\int_{-\pi}^{\pi} G_{0} (nx) dx = 0$ $\int_{-\pi}^{\pi} G_{0} (nx) dx = 0$ Everything vonisher except

 $\int_{-\pi}^{\pi} f(x) dx = \int_{-\pi}^{\pi} \frac{a_{0}}{2} dx = \frac{a_{0}}{2} \int_{-\pi}^{\pi} dx$ $= \frac{a_{0}}{2} \left[x \int_{-\pi}^{\pi} = \frac{a_{0}}{2} \left[\pi - (-\pi) \right] \right]$

$$= \frac{Q_0}{z} (2\pi) = Q_0 \pi$$

 $\Rightarrow \quad Q_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$ $Note: \quad \underline{Q_{0}}_{2} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

Finding Fourier Coefficients

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos nx + b_n \sin nx\right)$$

There's nothing special about b_4 or a_0 (aside from the factor of 2). In fact, for every n = 1, 2, 3, ...

$$\int_{-\pi}^{\pi} \cos^2(nx) \, dx = \pi, \quad \int_{-\pi}^{\pi} \sin^2(nx) \, dx = \pi$$

and
$$\int_{-\pi}^{\pi} 1^2 \, dx = 2\pi.$$

The orthogonality property of the set $\{1, cos(nx), sin(nx) | n = 1, 2, ...\}$ provides a set of formulas for the coefficients, a_n, b_n .

The Fourier Series of f(x) on $(-\pi, \pi)$

The **Fourier series** of the function *f* defined on $(-\pi, \pi)$ is given by

$$f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n\cos nx+b_n\sin nx\right).$$

Where

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \text{ and}$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx$$

November 11, 2021 8/42

イロト 不得 トイヨト イヨト 二日

Example

Find the Fourier series of the piecewise defined function

$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ x, & 0 \le x < \pi \end{cases}$$
Let r compute the $a's + b's$.

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f \omega_{1} dx = \frac{1}{\pi} \int_{-\pi}^{0} 0 dx + \frac{1}{\pi} \int_{0}^{\pi} x dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} x dx = \frac{1}{\pi} \left[\frac{\alpha^{2}}{2} \right]_{0}^{\pi} = \frac{1}{\pi} \left(\frac{\pi^{2}}{2} - 0 \right) = \frac{\pi}{2}$$

$$a_{0} = \frac{\pi}{2}$$

November 11, 2021 9/42

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \operatorname{Cor}(nx) dx = \frac{1}{\pi} \int_{-\pi}^{0} O \cdot \operatorname{Cor}(nx) dx + \frac{1}{\pi} \int_{0}^{\pi} x \operatorname{Cor}(nx) dx$$

$$= \frac{1}{\pi} \int_{0}^{\pi} x \cos(nx) dx \qquad \text{int by pats}$$

$$= \frac{1}{\pi} \left[\frac{x}{n} \sin(nx) \right]_{0}^{\pi} - \int_{0}^{\pi} \frac{1}{n} \sin(nx) dx \qquad \text{int by pats}$$

$$= \frac{1}{\pi} \left[\frac{x}{n} \sin(nx) \right]_{0}^{\pi} - \int_{0}^{\pi} \frac{1}{n} \sin(nx) dx \qquad \text{dv = } Cos(nx) dx$$

$$= \frac{1}{\pi} \left[\frac{x}{n} \sin(nx) \right]_{0}^{\pi} + \frac{1}{n^{2}} Cos(nx) \int_{0}^{\pi} \sqrt{1 - \frac{1}{n^{2}}} Cos(nx) + \frac{1}{n^{2}} Cos(nx) - \frac{1}{n^{2}} Cos(nx) \right]$$

$$= \frac{1}{\pi} \left[\frac{\pi}{n} \sin(n\pi) - \frac{1}{n} \sin(0) + \frac{1}{n^{2}} Cos(n\pi) - \frac{1}{n^{2}} Cos(nx) \right]$$

$$= \frac{1}{\pi} \left[\frac{\pi}{n} \sin(n\pi) - \frac{1}{n^{2}} \sin(0) + \frac{1}{n^{2}} \cos(n\pi) - \frac{1}{n^{2}} \cos(0) \right]$$

$$= \frac{1}{\pi} \left[\frac{\pi}{n} \sin(n\pi) - \frac{1}{n^{2}} \sin(0) + \frac{1}{n^{2}} \cos(n\pi) - \frac{1}{n^{2}} \cos(0) \right]$$

November 11, 2021 10/42

$$a_{n} = \frac{1}{\pi} \left[\frac{1}{n^{2}} (-1)^{n} - \frac{1}{n^{2}} \right] = \frac{(-1)^{n} - 1}{n^{2} \pi}$$

$$a_{n} = \frac{(-1)^{n} - 1}{n^{2} \pi}$$

$$b_n = \pm \int_{-\pi}^{\pi} f(x) \sin(nx) dx = \pm \int_{-\pi}^{0} \cos(nx) dx + \pm \int_{-\pi}^{\pi} x \sin(nx) dx$$

November 11, 2021 11/42

<ロ> <四> <四> <三> <三> <三> <三</td>

$$= \frac{1}{\pi} \left[\frac{-\chi}{n} C_{05} (n_{\chi}) + \frac{1}{n^{2}} S_{1n} (n_{\chi}) \right]_{0}^{T}$$

$$= \frac{1}{\pi} \left[\frac{-\pi}{n} C_{05} (n_{\pi}) + \frac{1}{n^{2}} S_{1n} (n_{\pi}) - \frac{0}{n} C_{0510} - \frac{1}{n^{2}} S_{1n} (n) \right]$$

$$= \frac{1}{\pi} \left[\frac{-\pi}{n} (-1)^{2} \right] = -\frac{(-1)^{2}}{n} = \frac{(-1)^{n+1}}{n}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} C_{10} (n_{\pi}) + \frac{1}{n^{2}} S_{10} (n_{\pi}) + \frac{1}{n^{2}} S_{10} (n_{\pi}) \right]$$

 $f(x) = \frac{u_0}{2} + \sum_{n=1}^{2} a_n \operatorname{Cor}(nx) + b_n \operatorname{Sin}(nx)$

November 11, 2021 12/42

▲□ > ▲圖 > ▲目 > ▲目 > → 目 → ○ < @ >

$$a_0 = \frac{\pi}{2}, \quad a_n = \frac{(-1)^n - 1}{n^2 \pi}$$

$$f(x) = \frac{\pi}{4} + \sum_{n=1}^{\infty} \frac{(-1)^{n} - 1}{n^{2} \pi} \operatorname{Cor}(nx) + \frac{(-1)^{n+1}}{n^{2} n} \operatorname{Cor}(nx)$$

This is the Fourier Sivies for

$$f(x) = \begin{cases} 0, -\pi < x < 0 \\ x, 0 \le x < \pi \end{cases}$$

November 11, 2021 13/42

<ロ> <四> <四> <三</td>

An Orthogonal Set of Functions on [-p, p]

This set can be generalized by using a simple change of variables $t = \frac{\pi X}{p}$ to obtain the orthogonal set on [-p, p]

$$\left\{1,\cos\frac{n\pi x}{p},\sin\frac{m\pi x}{p}\mid n,m=\pm 1,\pm 2,\ldots\right\}$$

There are many interesting and useful orthogonal sets of functions (on appropriate intervals). What follows is readily extended to other such (infinite) sets.

Fourier Series on an interval (-p, p)

The set of functions $\{1, \cos\left(\frac{n\pi x}{p}\right), \sin\left(\frac{m\pi x}{p}\right) | n, m \ge 1\}$ is orthogonal on [-p, p]. Moreover, we have the properties

$$\int_{-\rho}^{\rho} \cos\left(\frac{n\pi x}{\rho}\right) \, dx = 0 \quad \text{and} \quad \int_{-\rho}^{\rho} \sin\left(\frac{m\pi x}{\rho}\right) \, dx = 0 \text{ for all } n, m \ge 1,$$

November 11, 2021

17/42

$$\int_{-p}^{p} \cos\left(\frac{n\pi x}{p}\right) \sin\left(\frac{m\pi x}{p}\right) dx = 0 \quad \text{for all} \quad m, n \ge 1,$$
$$\int_{-p}^{p} \cos\left(\frac{n\pi x}{p}\right) \cos\left(\frac{m\pi x}{p}\right) dx = \begin{cases} 0, & m \ne n \\ p, & n = m \end{cases},$$
$$\int_{-p}^{p} \sin\left(\frac{n\pi x}{p}\right) \sin\left(\frac{m\pi x}{p}\right) dx = \begin{cases} 0, & m \ne n \\ p, & n = m \end{cases}.$$

Fourier Series on an interval (-p, p)

The orthogonality relations provide for an expansion of a function *f* defined on (-p, p) as

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi x}{p}\right) + b_n \sin\left(\frac{n\pi x}{p}\right) \right)$$

where

$$a_{0} = \frac{1}{p} \int_{-p}^{p} f(x) dx,$$

$$a_{n} = \frac{1}{p} \int_{-p}^{p} f(x) \cos\left(\frac{n\pi x}{p}\right) dx, \text{ and}$$

$$b_{n} = \frac{1}{p} \int_{-p}^{p} f(x) \sin\left(\frac{n\pi x}{p}\right) dx$$

November 11, 2021 18/42

イロト 不得 トイヨト イヨト 二日

November 11, 2021 19/42

$$a_{0} = \frac{1}{2} \int_{-1}^{1} f(x) dx = \int_{-1}^{0} 1 dx + \int_{0}^{1} (-2) dx$$
$$= x \int_{-1}^{0} -2x \int_{0}^{1} = (0 - (-1)) - 2(1 - 0) = -1$$
$$a_{0} = -1$$

$$\begin{aligned} &\Omega_n = \frac{1}{1} \int_{-1}^{1} f(x) G_s \left(\frac{n\pi x}{1} \right) dx \\ &= \int_{-1}^{0} C_{os} \left(n\pi x \right) dx + \int_{-1}^{1} (-z) C_{os} \left(n\pi x \right) dx \\ &= \frac{1}{n\pi} S_{in} \left(n\pi x \right) \int_{0}^{0} - \frac{2}{n\pi} S_{in} \left(n\pi x \right) \int_{0}^{1} dx \end{aligned}$$

◆□ → ◆□ → ◆臣 → ◆臣 → □臣

$$= \frac{1}{n\pi} \left(S_{in} O - S_{in} (-n\pi) \right) - \frac{2}{n\pi} \left(S_{in} (n\pi) - S_{in} O \right) = 0$$

$$a_n = 0$$
 for $n = 1, 2, 3, ...$

$$\begin{split} \dot{b}_{n} &= \frac{1}{1} \int_{-1}^{1} f(x) \sin\left(\frac{n\pi x}{1}\right) dx \\ &= \int_{-1}^{0} \sin\left(n\pi x\right) dx + \int_{0}^{1} (-2) \sin\left(n\pi x\right) dx \\ &= \frac{-1}{n\pi} \cos\left(n\pi x\right) \int_{-1}^{0} + \frac{2}{n\pi} \cos\left(n\pi x\right) \int_{0}^{1} dx \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x)\right]_{-1}^{0} + \frac{2}{n\pi} \left[\cos(n\pi x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(-n\pi x)\right] + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(-n\pi x)\right] + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} + \frac{2}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}^{1} \\ &= \frac{-1}{n\pi} \left[\cos(n\pi x) - \cos(x)\right]_{0}$$

$$= \frac{-1}{n\pi} \left(1 - (-1)^{n} \right) + \frac{2}{n\pi} \left((-1)^{n} - 1 \right)$$

$$= \frac{-1}{n\pi} + \frac{(-1)^{n}}{n\pi} + \frac{2}{n\pi} - \frac{2}{n\pi}$$

$$b_{n} = \frac{3((-1)^{n} - 1)}{n\pi}$$

 $a_0 = -1$, $a_n = 0$ n > 1

 $f(x) = \frac{a_{\bullet}}{2} + \sum_{N=1}^{\infty} a_n C_0 s(n\pi x) + b_n S_n(n\pi x)$

November 11, 2021 22/42

<ロ> <四> <四> <四> <四> <四</p>

) dence

$$f(x) = \frac{-1}{2} + \sum_{n=1}^{\infty} \frac{3((-1)^n - 1)}{n\pi} \sin(n\pi x)$$

$$f(x) = \begin{cases} 1, & -1 < x < 0 \\ -z, & 0 \le x < 1 \end{cases}$$

November 11, 2021 23/42

◆□> ◆圖> ◆注> ◆注> 「注」