November 13 Math 2306 sec. 52 Spring 2023

Section 15: Shift Theorems

We saw the first translation theorem.

Theorem: Shift in s

Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

Equivalently,

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\}
$$

We'll see a similar result relating to translations in the variable t. This requires some preliminary ideas.

The Unit Step Function

Definition: Unit Step Function

Let $a>0$. The unit step function centered at a is denoted $\mathscr{U}(t-a)$. It is defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

The name unit step function is derived from its graph which looks like a stair step of height 1.

$$
u(t)=u(t-0)
$$

$=1$

Figure: A graph of $\mathscr{U}(t-a)$ which jumps from zero to one at $t=a$.

Piecewise Defined Functions
Verify that

$$
\begin{aligned}
f(t) & = \begin{cases}g(t), \quad 0 \leq t<a & a>0 \\
h(t), & t \geq a\end{cases} \\
& =g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)
\end{aligned}
$$

suppose t is in the interval $0 \leq t<a$
Then $u(t-a)=0$

$$
\begin{aligned}
g(t)-g(t) u(t-a)+h(t) u(t-a) & = \\
g(t)-g(t) \cdot 0+h(t) \cdot 0 & =g(t)
\end{aligned}
$$

This is equal to $f(t)$ on this interval.

$$
\left\{\begin{array}{l}
g(t), \quad 0 \leq t<a \\
h(t), \quad t \geq a
\end{array}=g(t)-g(t) \mathscr{U}(t-a)+h(t) \mathscr{U}(t-a)\right.
$$

suppose $t \geqslant a$, then $u(t-a)=1$
And

$$
\begin{aligned}
g(t)-g(t) u(t-a)+h(t) u(t-a) & = \\
g(t)-g(t) \cdot 1+h(t) \cdot 1= & h(t)
\end{aligned}
$$

This is also equal to $f(t)$ on this interval

$$
\text { Example } f(t)= \begin{cases}e^{t}, & 0 \leq t<2 \\ t^{2}, & 2 \leq t<5 \\ 2 t & t \geq 5\end{cases}
$$

Rewrite the function f in terms of the unit step function.

$$
f(t)=e^{t}-e^{t} u(t-2)+t^{2} u(t-2)-t^{2} u(t-5)+2 t u(t-5)
$$

Check: Suppose $0 \leq t<2, u(t-2)=0 \quad u(t-5)=0$

$$
f(t)=e^{t}-e^{t} \cdot 0+t^{2} \cdot 0-t^{2} \cdot 0+2 t \cdot 0=e^{t}
$$

For $\quad 2 \leq t<5, u(t-2)=1 \quad u(t-5)=0$

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 0+2 t \cdot 0=t^{2}
$$

For $t \geqslant 5, \quad u(t-2)=1 \quad u(t-5)=1$

$$
f(t)=e^{t}-e^{t} \cdot 1+t^{2} \cdot 1-t^{2} \cdot 1+2 t \cdot 1=2 t
$$

Find $\mathscr{L}\{\mathscr{U}(t-a)\}$

$$
u(t-a)=\left\{\begin{array}{l}
0,0 \leq t<a \\
1, t \geqslant a
\end{array}\right.
$$

By detrition

$$
\begin{aligned}
\begin{array}{l}
\mathcal{L}\{u(t-a)\}
\end{array} & =\int_{0}^{\infty} e^{-s t} u(t-a) d t \\
& =\int_{0}^{a} e^{-s t} \cdot 0 d t+\int_{a}^{\infty} e^{-s t} \cdot 1 d t \\
\text { for }_{s \geqslant 0} \quad & =\left.\frac{-1}{s} e^{-s t}\right|_{a} ^{\infty}=\frac{-1}{s}\left(0-e^{-s(a)}\right) \\
& =\frac{e^{-a s}}{s}
\end{aligned}
$$

Translation in t

Given a function $f(t)$ for $t \geq 0$, and a number $a>0$

$$
f(t-a) \mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ f(t-a), & t \geq a\end{cases}
$$

Figure: The function $f(t-a) \mathscr{U}(t-a)$ has the graph of f shifted a units to the right with value of zero for t to the left of a.

Theorem (translation in t)

If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then

$$
\mathscr{L}\{f(t-a) \mathscr{U}(t-a)\}=e^{-a s} F(s) .
$$

A special case is $f(t)=1$. We just found
$\mathscr{L}\{\mathscr{U}(t-a)\}=e^{-a s} \mathscr{L}\{1\}=\frac{e^{-a s}}{s}$.
We can state this in terms of the inverse transform as

$$
\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) \mathscr{U}(t-a) .
$$

