
November 13 Math 2306 sec. 53 Fall 2024

Section 15: Shift Theorems

Theorem Shift in s:

Suppose L {f (t)} = F (s). Then for any real number a

L
{

eat f (t)
}
= F (s − a).

From the perspective of the inverse transform

L −1{F (s − a)} = eatL −1{F (s)}.



The Unit Step Function, Piecewise Defined Functions
& t-Shift

We defined the unit step function U (t − a) as

U (t − a) =
{

0, 0 ≤ t < a
1, t ≥ a

Piecewise defined functions can be expressed in terms of unit step
factors.

Given a function f (t) defined for t ≥ 0 and a > 0, we defined the
translation

f (t − a)U (t − a) =
{

0, 0 ≤ t < a
f (t − a), t ≥ a

.

which translates f to the right a units and assigns the value of zero on
the interval [0,a).



Theorem (translation in t)

Then we have the theorem

Theorem Shift in t:

If F (s) = L {f (t)} and a > 0, then

L {f (t − a)U (t − a)} = e−asF (s).

We can state this in terms of the inverse transform as

L −1{e−asF (s)} = f (t − a)U (t − a).



Alternative Form for Translation in t
It is often the case that we wish to take the transform of a product of
the form

g(t)U (t − a)

in which the function g is not translated.

The main theorem statement

L {f (t − a)U (t − a)} = e−asF (s).

can be restated as

1
1
L {g(t)U (t − a)} = e−asL {g(t + a)}.1

1

This is based on the observation that

g(t) = g((t + a)− a).



Example

L {g(t)U (t − a)} = e−asL {g(t + a)}

Example: Find L {cos t U
(

t − π

2

)
}





Example

L −1{e−asF (s)} = f (t − a)U (t − a)

Example: Find L −1
{

e−2s

s(s + 1)

}



L −1{e−asF (s)} = f (t − a)U (t − a)

L −1
{

e−2s

s(s + 1)

}



Example

L −1{e−asF (s)} = f (t − a)U (t − a)

Example: Evaluate L −1
{

e−4s

(s + 6)9

}



L −1{e−asF (s)} = f (t − a)U (t − a)

L −1
{

e−4s

(s + 6)9

}



Section 16: Laplace Transforms of Derivatives and
IVPs

Figure: We’ll use the Laplace transform as a tool for solving certain IVPs and
systems of IVPs. Our use will be restricted to IVPs with constant
coefficients and initial conditions given at t = 0.

First: Let’s look at differentiation.



Transforms of Derivatives

We saw1 how the following is obtained from the definition of the
Laplace transform and a bit of integration by parts.

The Laplace Transform of a Derivative

Suppose f is differentiable on [0,∞) and F (s) = L {f (t)}, then

L {f ′(t)} = sF (s)− f (0).

We can use this result recursively to get transforms for higher order
derivatives.

1See Worksheet 14 for details.



Transforms of Derivatives
Suppose F (s) = L {f (t)} so that L {f ′(t)} = sF (s)− f (0). Express
L {f ′′(t)} in terms of F .

L {f ′′(t)} =

Remark

Note that the operation of differentiation where the variable t lives corresponds
to an algebraic operation, multiply by some power of s and add a polynomial,
where s lives.



The Laplace Transform of Derivatives

For y = y(t) defined on [0,∞) having derivatives y ′, y ′′ and so forth, if
L {y(t)} = Y (s), then

L

{
dy
dt

}
= sY (s)− y(0)

L

{
d2y
dt2

}
= s2Y (s)− sy(0)− y ′(0)

L

{
d3y
dt3

}
= s3Y (s)− s2y(0)− sy ′(0)− y ′′(0)

...

L

{
dny
dtn

}
= snY (s)− sn−1y(0)− sn−2y ′(0)− · · · − y (n−1)(0).



Warning about Notation

• The characters Y and y DO NOT represent the same thing.
They CANNOT be used interchangeably.

• An expression such as y ′(0) means the value of the
function y ′(t) when the input t = 0.

• The function L {y(t)} depends on s NOT on t .

• And, the function L −1{Y (s)} depends on t NOT on s.



Solving and IVP

Use the Laplace transform to solve the initial value problem.

y ′′ − 6y ′ + 8y = t , y(0) = 1, y ′(0) = 2



y ′′ − 6y ′ + 8y = t ,









Use Laplace Transforms to Solve and IVP

• Start with constant coefficient IVP with IC at t = 0. For
examplea

ay ′′ + by ′ + cy = g(t), y(0) = y0, y ′(0) = y1.

• Let Y (s) = L {y(t)} and take the transform of both sides of
the ODE using any necessary results.

• Sub in the initial conditions where they appear in the
transformed equation.

• Use basic algebra to isolate the transform Y (s).
• Using whatever algebra or function identities that are

needed, take the inverse transform to obtain the solution

y(t) = L −1{Y (s)}.
aThe IVP can be of any order.



Input & State Responses
Note that our solution has the basic format

Y (s) =
Q(s)
P(s)

+
G(s)
P(s)

where Q is a polynomial with coefficients determined by the initial conditions,
G is the Laplace transform of g(t) and P is the characteristic polynomial of
the original equation. The solution y consists of two corresponding terms.

Zero Input Response

L −1
{

Q(s)
P(s)

}
is called the zero input response,

and

Zero State Response

L −1
{

G(s)
P(s)

}
is called the zero state response.



Input & State Responses
The zero input and zero state responses are related to the complementary
and particular solutions, but they are not quite the same since they are
related to initial value problems as opposed to simply the differential equation.

Zero Input Response

The zero input response satisfies the initial value problem with homo-
geneous differential equation and nonhomogeneous initial conditions,

ay ′′ + by ′ + cy = 0, y(0) = y0, y ′(0) = y1.

Zero State Response

The zero state response satisfies the initial value problem with nonho-
mogeneous differential equation and homogeneous initial conditions,

ay ′′ + by ′ + cy = g(t), y(0) = 0, y ′(0) = 0.


