## November 14 Math 2306 sec. 51 Fall 2022

## Section 16: Laplace Transforms of Derivatives and IVPs

We can solve a system of ODEs using Laplace transforms. Here, we'll consider systems that are

- linear,
- having initial conditions at $t=0$, and
- constant coefficient.


## Example



Figure: If we label current $i_{2}$ as $x(t)$ and current $i_{3}$ as $y(t)$, we get the system of equations below. (Assuming $i_{1}(0)=0$.)

Solve the system of equations

$$
\begin{array}{ll}
\frac{d x}{d t}=-2 x-2 y+60, & x(0)=0 \\
\frac{d y}{d t}=-2 x-5 y+60, & y(0)=0
\end{array}
$$

$$
\begin{array}{ll}
\frac{d x}{d t}=-2 x-2 y+60, & x(0)=0 \\
\frac{d y}{d t}=-2 x-5 y+60, & y(0)=0
\end{array}
$$

We took the Laplace transform of both equations and used the initial conditions. We arrived at the following linear, algebraic system of equations.

$$
\begin{array}{rllll}
(s+2) X(s)+\quad 2 Y(s) & = & \frac{60}{s} & & X(s) \\
2 X(s)+(s+5) Y(s) & = & \frac{60}{s} & & \\
\text { where } & & \mathscr{L}\{x(t)\} \\
\text { and } & = & \mathscr{L}\{y(t)\}
\end{array}
$$

We can restate this using a matrix formalism.

Example Continued...

$$
\begin{aligned}
& (s+2) X(s)+2 Y(s)=\frac{60}{s} \\
& 2 X(s)+(s+5) Y(s)=\frac{60}{s} \\
& {\left[\begin{array}{cc}
s+2 & 2 \\
2 & s+5
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
60 / s \\
60 / s
\end{array}\right]} \\
& A=\left[\begin{array}{cc}
s+2 & 2 \\
2 & s+5
\end{array}\right], A_{Y}=\left[\begin{array}{cc}
s+2 & 60 / s \\
2 & 60 / s
\end{array}\right] \\
& A_{X}=\left[\begin{array}{cc}
60 / s & 2 \\
60 / s & s+5
\end{array}\right] \\
& \operatorname{det}(A)=(s+2)(s+5)-4=s^{2}+7 s+10-4=s^{2}+7 s+6
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{dt}\left(A_{x}\right)=\frac{60}{s}(s+5)-\frac{60}{s}(2)=\frac{60}{s}(s+5-2)=\frac{60}{s}(s+3) \\
& \operatorname{det}\left(A_{y}\right)=\frac{60}{s}(s+2)-\frac{60}{5}(2)=\frac{60}{s}(s+2-2)=\frac{60}{s}(s)=60
\end{aligned}
$$

So

$$
\begin{aligned}
& X(s)=\frac{\frac{60}{s}(s+3)}{s^{2}+7 s+6}=\frac{60(s+3)}{s(s+6)(s+1)} \\
& Y(s)=\frac{60}{s^{2}+7 s+6}=\frac{60}{(s+6)(s+1)}
\end{aligned}
$$

Using partial fractions,

$$
\begin{aligned}
& X(s)=\frac{30}{s}-\frac{24}{s+1}-\frac{6}{s+6} \\
& Y(s)=\frac{12}{s+1}-\frac{12}{s+6}
\end{aligned}
$$

The solution to the IVP is

$$
\begin{aligned}
& x(t)=\mathcal{L}^{-1}\{X(s)\}, y(t)=\mathcal{L}^{-1}\{Y(s)\} \\
& x(t)=30-24 e^{-t}-6 e^{-6 t} \\
& y(t)=12 e^{-t}-12 e^{-6 t}
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{d x}{d t}=-2 x-2 y+60, & x(0)=0 \\
\frac{d y}{d t}=-2 x-5 y+60, & y(0)=0
\end{array}
$$

Example
Use the Laplace transform to solve the system of equations

$$
\begin{aligned}
x^{\prime \prime}(t) & =y, & x(0)=1, \quad x^{\prime}(0)=0 \\
y^{\prime}(t) & =x, & y(0)=1
\end{aligned}
$$

Take the trass form of each $O D E$
Let $X(s)=\mathscr{L}^{-1}\{x(t)\}$ and $Y(s)=\mathscr{L}\{y(t)\}$.

$$
\begin{array}{lr}
\mathcal{L}\left\{x^{\prime \prime}\right\}=\mathcal{L}\{y\} \Rightarrow & s^{2} X(s)-s X^{\prime \prime 2}(0)-X^{\prime \prime}(0)=Y(s) \\
\mathcal{L}\left\{y^{\prime}\right\}=\mathcal{L}\{x\} \quad s Y(s)-y(0)=X(s) \\
z^{\prime \prime}
\end{array}
$$

$$
\begin{array}{ll}
s^{2} X(s)-s=Y(s) \\
\left.s Y \tilde{j}_{( }\right)-1=X(s)
\end{array} \quad \Rightarrow \quad s^{2} X(s)-Y(s)=s
$$

In matrix format

$$
\begin{array}{ll}
{\left[\begin{array}{cc}
s^{2} & -1 \\
-1 & s
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{l}
s \\
1
\end{array}\right]} \\
A=\left[\begin{array}{cc}
s^{2} & -1 \\
-1 & s
\end{array}\right] & \operatorname{det}(A)=s^{3}-1 \\
A_{X}=\left[\begin{array}{cc}
s & -1 \\
1 & s
\end{array}\right] & \operatorname{det}\left(A_{X}\right)=s^{2}+1 \\
A_{Y}=\left[\begin{array}{cc}
s^{2} & s \\
-1 & 1
\end{array}\right] & \operatorname{det}\left(A_{Y}\right)=s^{2}+s
\end{array}
$$

$$
\begin{aligned}
& X(s)=\frac{s^{2}+1}{s^{3}-1}=\frac{s^{2}+1}{(s-1)\left(s^{2}+s+1\right)} \\
& \Psi(s)=\frac{s^{2}+5}{s^{3}-1}=\frac{s^{2}+s}{(s-1)\left(s^{2}+s+1\right)}
\end{aligned}
$$

Using partial fractions

$$
\begin{aligned}
& X(s)=\frac{\frac{2}{3}}{s-1}+\frac{\frac{1}{3}\left(s+\frac{1}{2}\right)}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}-\frac{\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& \Psi(s)=\frac{\frac{2}{3}}{s-1}+\frac{\frac{1}{3}\left(s+\frac{1}{2}\right)}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{s+\frac{1}{2}}{\left(s+\frac{1}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right\}=e^{-\frac{1}{2} t} \mathscr{L}^{-1}\left\{\frac{s}{s^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right\} \\
& \mathscr{L}^{-1}\left\{\frac{\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right\}=e^{-\frac{1}{2} t} \frac{1}{\sqrt{3}} \mathscr{L}^{-1}\left[\frac{\frac{\sqrt{3}}{2}}{s^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right\} \\
& X(s)=\frac{\frac{2}{3}}{s-1}+\frac{\frac{1}{3}\left(s+\frac{1}{2}\right)}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}-\frac{\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& \Psi(s)=\frac{\frac{2}{3}}{s-1}+\frac{\frac{1}{3}\left(s+\frac{1}{2}\right)}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& x(t)=\frac{2}{3} e^{t}+\frac{1}{3} e^{-\frac{1}{2} t} \cos \left(\frac{\sqrt{3}}{2} t\right)-\frac{1}{\sqrt{3}} e^{-\frac{1}{2} t} \sin \left(\frac{\sqrt{3}}{2} t\right)
\end{aligned}
$$

$$
y(t)=\frac{2}{3} e^{t}+\frac{1}{3} e^{-\frac{1}{2} t} \cos \left(\frac{\sqrt{3}}{2} t\right)+\frac{1}{\sqrt{3}} e^{-\frac{1}{2} t} \sin \left(\frac{\sqrt{3}}{2} t\right)
$$

is the solution to the IVP.

