# November 14 Math 3260 sec. 53 Fall 2025

### 5.2 Linear Transformations for $R^n$ to $R^m$

### **Linear Transformation**

A **linear transformation** from  $R^n$  to  $R^m$  is a function  $T: R^n \to R^m$  such that for each pair of vectors  $\vec{x}$  and  $\vec{y}$  in  $R^n$  and for any scalar c

- 1.  $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$ , and
- $2. T(c\vec{x}) = cT(\vec{x}).$

### Lemma

If *A* is an  $m \times n$  matrix and  $T : \mathbb{R}^n \to \mathbb{R}^m$  is defined by  $T(\vec{x}) = A\vec{x}$ , then *T* is a linear transformation.



## **Linear Transformations & Matrices**

#### **Theorem**

Suppose that  $T: \mathbb{R}^n \to \mathbb{R}^m$  is a linear transformation. Then there is a unique  $m \times n$  matrix A, such that  $T(\vec{x}) = A\vec{x}$  for all  $\vec{x} \in \mathbb{R}^n$ .

Furthermore, the matrix<sup>a</sup> A is the matrix whose column vectors are

$$Col_{j}(A) = T(\vec{e}_{j})$$

where  $\mathcal{E} = \{\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n\}$  is the standard basis for  $R^n$ .

<sup>&</sup>lt;sup>a</sup>We'll call A the **standard matrix** for the transformation T.

### Fundamental Subspaces: Range and Kernel

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation, and let A be its standard matrix. The **range** of T is defined by

$$range(T) = \{T(\vec{x}) \mid \vec{x} \in R^n\}.$$

and the **kernel** of T, denoted ker(T) is defined by

$$\ker(T) = \left\{ \vec{x} \in R^n \mid T(\vec{x}) = \vec{0}_m \right\}.$$

Moreover, range(T) is a subspace of  $R^m$ , ker(T) is a subspace of  $R^n$ , and

$$range(T) = CS(A)$$
, and  $ker(T) = \mathcal{N}(A)$ .

## Onto & One-to-One

#### **Theorem**

Let  $T: \mathbb{R}^n \to \mathbb{R}^m$  be a linear transformation. Then

- 1. T is onto if and only if dim(range(T)) = m, and
- 2. T is one-to-one if and only if dim(ker(T)) = 0.

Since range(T) = CS(A), T is onto if and only if A has a pivot in every row.

Since  $ker(T) = \mathcal{N}(A)$ , T is one-to-one if and only if all columns of A are pivot columns.

## **Invertible Linear Transformations**

### Inverse of a Linear Transformation

Let  $T: \mathbb{R}^n \to \mathbb{R}^n$  be a linear transformation with standard matrix A. Then T is invertible if and only if A is an invertible matrix. In this case,

$$T^{-1}(\vec{x}) = A^{-1}\vec{x}$$

for each  $\vec{x}$  in  $\mathbb{R}^n$ .

The standard matrix for  $T^{-1}$  is the inverse of the standard matrix for T.



November 13, 2025

# Example

Let  $T: \mathbb{R}^2 \to \mathbb{R}^2$  be the linear transformation given by  $T(\langle x_1, x_2 \rangle) = \langle x_1 + x_2, x_1 - x_2 \rangle$ . Show that T is invertible, and find  $T^{-1}(\langle x_1, x_2 \rangle)$ .

$$T'(\vec{x}) = \vec{A}\vec{x}$$
 if  $T(\vec{x}) = A\vec{x}$   
Find A:  $T(\vec{e}_1) = T(\langle 1,0 \rangle) = \langle 1,1 \rangle$   
 $T(\vec{e}_2) = T(\langle 0,1 \rangle) = \langle 1,-1 \rangle$ 

$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, F_{n-d} A$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \xrightarrow{\text{crob}} \begin{bmatrix} 1 & 0 & |\frac{1}{2} & \frac{1}{2} \\ 0 & 1 & |\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$



$$A' = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$T'(x) = A'x$$

$$T'((x_1, x_2)) = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} (x_1, x_2)$$

$$= (\frac{1}{2}x_1 + \frac{1}{2}x_2, \frac{1}{2}x_1 - \frac{1}{2}x_2)$$

$$T'((x_1, x_2)) = (\frac{1}{2}x_1 + \frac{1}{2}x_2, \frac{1}{2}x_1 - \frac{1}{2}x_2)$$

# 5.3 Visualizing Linear Transformations

We want to consider certain linear mappings from  $R^2$  to  $R^2$  that correspond to geometric transformations.

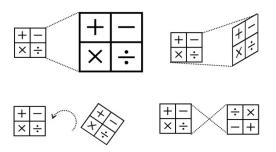


Figure: Scaling, shearing, rotations, reflections

# **Scaling Transformation**

Let r > 0 and define  $T : R^2 \longrightarrow R^2$  by  $T(\vec{x}) = r\vec{x}$ . T is a **dilation** if r > 1 and a **contraction** if 0 < r < 1.

Find the standard matrix of T.

$$T(\vec{e}_i) = r\vec{e}_i = r\langle 1,0\rangle = \langle r,0\rangle$$

$$T(\vec{e}_z) = r\vec{e}_z = r\langle 0,1\rangle = \langle 0,r\rangle$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & r \end{bmatrix} = r \mathbf{I}_z$$

November 13, 2025

# The Geometry of Dilation/Contraction

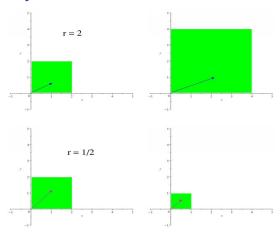


Figure: The 2  $\times$  2 square in the plane under the dilation  $\vec{x} \mapsto 2\vec{x}$  (top) and the contraction  $\vec{x} \mapsto \frac{1}{2}\vec{x}$  (bottom). Each includes an example of a single vector and its image.

# A Shear Transformation on $R^2$

Find the standard matrix for the linear transformation from  $R^2 \to R^2$  that maps  $\vec{e}_2$  to  $\vec{e}_1 + \vec{e}_2$  and leaves  $\vec{e}_1$  unchanged.

Calling the shear S,  

$$S(\vec{e}_i) = S(\vec{e}_i) = \vec{e}_i = (1,0)$$
  
 $S(\vec{e}_z) = \vec{e}_i + \vec{e}_z = (1,0) + (0,1) = (1,1)$   
 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ 

# A Shear Transformation on R<sup>2</sup>

For the shear transformation with standard matrix  $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$  find the images of the vectors

$$\vec{x}_1 = \langle 0, -1 \rangle, \quad \vec{x}_2 = \langle 1, -1 \rangle, \quad \text{and} \quad \vec{x}_3 = \langle 1, 1 \rangle$$

$$S(\vec{x}_1) : S(\langle 0, -1 \rangle) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \langle 0, -1 \rangle = \langle -1, -1 \rangle$$

$$S(\vec{x}_2) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \langle 1, -1 \rangle = \langle 0, -1 \rangle$$

$$S(\vec{x}_3) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \langle 1, 1 \rangle = \langle 2, 1 \rangle$$

# A Shear Transformation on R<sup>2</sup>

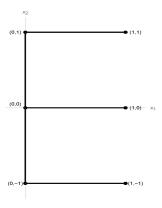


Figure: The letter "E" from line segments connecting select points from  $\{(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)\}.$ 

# A Shear Transformation on R<sup>2</sup>

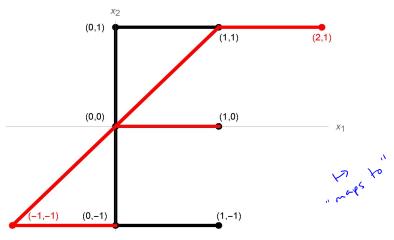


Figure: Letter "E" mapped under the shear transformation  $\vec{x} \mapsto \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \vec{x}$ .



# **Shearing Transformations**

The matrix for a shearing transformation looks like one of

$$\underbrace{\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}}_{\text{horizontal shear}} \quad \text{or} \quad \underbrace{\begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}}_{\text{vertical shear}}$$

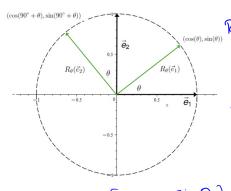
(A shear matrix is what you get from  $I_2$  by doing one row replacement:  $kR_i + R_j \rightarrow R_j$ .)



Figure: Sheared Sheep (Top) Horizontal Shear (right k > 0 and left k < 0), (Bottom) Vertical Shear (up k > 0 and down k < 0).

# A Rotation on R<sup>2</sup>

Let  $R_{\theta}: R^2 \longrightarrow R^2$  be the rotation transformation that rotates each point in  $R^2$  counter clockwise about the origin through an angle  $\theta$ . Find the standard matrix for  $R_{\theta}$ .



## A Rotation in $R^2$

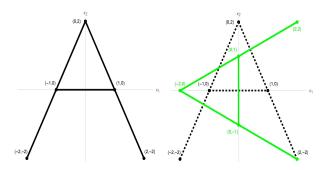


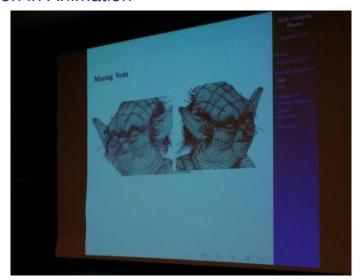
Figure: The letter "A" under a rotation transformation  $R_{90^{\circ}}$ .

#### The standard matrix

$$A_{90^{\circ}} = \begin{bmatrix} \cos 90^{\circ} & -\sin 90^{\circ} \\ \sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$



# **Rotation in Animation**



## **Rotation in Animation**

