November 16 Math 2306 sec. 52 Fall 2022

Section 16: Laplace Transforms of Derivatives and IVPs

Let's solve some IVPs using the Laplace transform.

$$
y^{\prime \prime}+4 y^{\prime}+3 y=\left\{\begin{array}{cc}
0, & 0 \leq t<6 \\
6, & 6 \leq t
\end{array} \quad y(0)=-1, \quad y^{\prime}(0)=-1\right.
$$

Rewrite the ODE using the step function.

Rewrite the ODE.

$$
y^{\prime \prime}+4 y^{\prime}+3 y=6 \mathscr{U}(t-6) \quad y(0)=-1, \quad y^{\prime}(0)=-1
$$

Take the transform and apply the I.C.

$$
y^{\prime \prime}+4 y^{\prime}+3 y=6 \mathscr{U}(t-6) \quad y(0)=-1, \quad y^{\prime}(0)=-1
$$

$$
\begin{gathered}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4(s Y(s)-y(0))+3 Y(s)=\frac{6 e^{-6 s}}{s} \\
s^{2} Y(s)+s+1+4 s Y(s)+4+3 Y(s)=\frac{6 e^{-6 s}}{s}
\end{gathered}
$$

Isolate $Y(s)$.

$$
\begin{gathered}
s^{2} Y(s)+s+1+4 s Y(s)+4+3 Y(s)=\frac{6 e^{-6 s}}{s} \\
Y(s)=\frac{6 e^{-6 s}}{s\left(s^{2}+4 s+3\right)}-\frac{s+5}{s^{2}+4 s+3} \Longrightarrow \\
Y(s)=\frac{6 e^{-6 s}}{s(s+1)(s+3)}-\frac{s+5}{(s+1)(s+3)}
\end{gathered}
$$

Decompose as needed, and take the Inverse Transform.

$$
\begin{gathered}
Y(s)=\frac{6 e^{-6 s}}{s(s+1)(s+3)}-\frac{s+5}{(s+1)(s+3)} \\
Y(s)=e^{-6 s}\left(\frac{2}{s}-\frac{3}{s+1}+\frac{1}{s+3}\right)-\frac{2}{s+1}+\frac{1}{s+3}
\end{gathered}
$$

The solution $y(t)=\mathscr{L}^{-1}\{Y(s)\}$

$$
y(t)=\left(2-3 e^{-(t-6)}+e^{-3(t-6)}\right) \mathscr{U}(t-6)-2 e^{-t}+e^{-3 t}
$$

Solving a System

Consider the system of equations ${ }^{1}$

$$
\begin{array}{lll}
\frac{d x}{d t}+y & =4, & x(0)=0 \\
-4 x+\frac{d y}{d t}+4 y=0, & y(0)=0
\end{array}
$$

${ }^{1}$ See Worksheet 11 which includes a derivation of this system from a LRC circuit network.

Take the transform and apply the IC.

$$
\begin{aligned}
\frac{d x}{d t}+y & =4, \\
-4 x+\frac{d y}{d t}+4 y=0, & y(0)=0 \\
s X(s)+\quad Y(s) & =\frac{4}{s} \\
-4 X(s)+(s+4) Y(s) & =0
\end{aligned}
$$

Isolate X and Y.

$$
\begin{gathered}
{\left[\begin{array}{cc}
s & 1 \\
-4 & s+4
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
4 / s \\
0
\end{array}\right]} \\
X(s)=\frac{4(s+4)}{s(s+2)^{2}}, \quad \text { and } \quad Y(s)=\frac{16}{s(s+2)^{2}}
\end{gathered}
$$

Decompose and take the inverse transform.

$$
\begin{gathered}
X(s)=\frac{4(s+4)}{s(s+2)^{2}}, \quad \text { and } \quad Y(s)=\frac{16}{s(s+2)^{2}} \\
X(s)=\frac{4}{s}-\frac{4}{s+2}-\frac{4}{(s+2)^{2}}, \quad \text { and } \\
Y(s)=\frac{4}{s}-\frac{4}{s+2}-\frac{8}{(s+2)^{2}}
\end{gathered}
$$

$$
x(t)=4-4 e^{-2 t}-4 t e^{-2 t}, \quad \text { and } \quad y(t)=4-4 e^{-2 t}-8 t e^{-2 t}
$$

