November 17 Math 2306 sec. 52 Fall 2021

Section 18: Sine and Cosine Series

This section has two topics

- Fourier series of functions on $(-p, p)$ that have symmetry, and
- half-range sine and cosine series for functions defined on $(0, p)$.

Functions with Symmetry
Recall some definitions:
Suppose f is defined on an interval containing x and $-x$.
If $f(-x)=f(x)$ for all x, then f is said to be even.
If $f(-x)=-f(x)$ for all x, then f is said to be odd.
For example, $f(x)=x^{n}$ is even if n is even and is odd if n is odd. The trigonometric function $g(x)=\cos x$ is even, and $h(x)^{=} \sin x$ is odd.

Even and Odd Symmetry

Figure: Graphical interpretation of even and odd symmetry.

Integrals on symmetric intervals

If f is an even function on $(-p, p)$, then

$$
\int_{-p}^{p} f(x) d x=2 \int_{0}^{p} f(x) d x
$$

If f is an odd function on $(-p, p)$, then

$$
\int_{-p}^{p} f(x) d x=0
$$

Products of Even and Odd functions

$$
\text { Even } \times \text { Even }=\text { Even, }
$$

and
Odd \times Odd $=$ Even.
While
Even \times Odd $=$ Odd.

So, suppose f is even on $(-p, p)$. This tells us that $f(x) \cos (n x)$ is even for all n and $f(x) \sin (n x)$ is odd for all n.

And, if f is odd on $(-p, p)$. This tells us that $f(x) \sin (n x)$ is even for all n and $f(x) \cos (n x)$ is odd for all n

Fourier Series of an Even Function

If f is even on $(-p, p)$, then the Fourier series of f has only constant and cosine terms. Moreover

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)
$$

where
$a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$

and
$a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Fourier Series of an Odd Function

If f is odd on $(-p, p)$, then the Fourier series of f has only sine terms. Moreover

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)
$$

where
$b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Find the Fourier series of f

$$
f(x)= \begin{cases}x+\pi, & -\pi<x<0 \\ \pi-x, & 0 \leq x<\pi\end{cases}
$$

Symmeting can be determined by evaluating $f(-x)$ ．
or by graphing

$$
\begin{aligned}
& p=\pi \\
& \frac{n \pi x}{P}=\frac{n \pi x}{\pi}=n x
\end{aligned}
$$

Find a_{0} and a_{n}

$$
\begin{aligned}
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) d x \\
& =\frac{2}{\pi}\left[\pi x-\left.\frac{x^{2}}{2}\right|_{0} ^{\pi}=\frac{2}{\pi}\left[\pi^{2}-\frac{\pi^{2}}{2}-0\right]=\frac{2}{\pi}\left[\frac{\pi^{2}}{2}\right]\right. \\
a_{0} & =\pi
\end{aligned}
$$

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos (n x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \cos (n x) d x
\end{aligned}
$$

Int by ports $u=\pi-x$, $d u=-d x$

$$
d v=\cos (n x) d x \quad, v=\frac{1}{n} \sin (n x)
$$

$$
\begin{aligned}
& a_{n}=\frac{2}{\pi}\left[\left.\frac{\pi-x}{n} \sin (n x)\right|_{0} ^{\pi}+\int_{0}^{\pi} \frac{1}{n} \sin (n x) d x\right. \\
& =\frac{2}{\pi}\left[\left.\frac{-1}{n^{2}} \cos (n x)\right|_{0} ^{\pi}\right. \\
& =\frac{-2}{n^{2} \pi}[\cos (n \pi)-\cos (0)] \\
& =\frac{-2}{n^{2} \pi}\left[(-1)^{n}-1\right] \\
& a_{n}=\frac{2}{n^{2} \pi}\left(1-(-1)^{n}\right) \\
& a_{0}=\pi
\end{aligned}
$$

The series is

$$
f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi}\left(1-(-1)^{n}\right) \cos (n x)
$$

for

$$
f(x)= \begin{cases}x+\pi, & -\pi<x<0 \\ \pi-x, & 0 \leq x<\pi\end{cases}
$$

Let's plot the shies over the interval $-3 \pi<x<3 \pi$

Taking Advantage of Symmetry

$f(x)=\left\{\begin{array}{lc}x+\pi, & -\pi<x<0 \\ \pi-x, & 0 \leq x<\pi\end{array}\right.$
Notice the amount of work we saved by using the symmetry. The formulas for the coefficients give

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{0}(x+\pi) d x+\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{0}(x+\pi) \cos (n x) d x+\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) \cos (n x) d x \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{0}(x+\pi) \sin (n x) d x+\frac{1}{\pi} \int_{0}^{\pi}(\pi-x) \sin (n x) d x
\end{aligned}
$$

We only had to compute the integrals in green.

Half Range Sine and Half Range Cosine Series

Suppose f is only defined for $0<x<p$. We can extend f to the left, to the interval $(-p, 0)$, as either an even function or as an odd function. Then we can express f with two distinct series.

Figure: Some function f shown in dark blue with even and odd extensions.

Half Range Cosine Series

For f defined on $(0, p)$ we can pretend that f is defined on $(-p, p)$ by setting

$$
f(-x)=f(x) \quad 0<x<p .
$$

Then we can define the
Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$
where $a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Extending a Function to be Even

Graph of Even Extension of $f(x)$

Figure: $f(x)=p-x, 0<x<p$ together with its even extension.

Half Range Sine

Suppose f is defined on $(0, p)$. We can extend f to be defined on $(-p, p)$ by setting

$$
f(-x)=-f(x) \quad 0<x<p .
$$

Then we can define the
Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$
where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Extending a Function to be Odd

Graph of Odd Extension of $f(x)$

Figure: $f(x)=p-x, 0<x<p$ together with its odd extension.

Find the Half Range Sine Series of f

$$
\begin{aligned}
& f(x)=2-x, \quad 0<x<2 \\
& p=2, \quad \frac{n \pi x}{p}=\frac{n \pi x}{2} \\
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{2}\right) \\
& b_{n}=\frac{2}{2} \int_{0}^{2} f(x) \sin \left(\frac{n \pi x}{2}\right) d x \\
&=\int_{0}^{2}(2-x) \sin \left(\frac{n \pi x}{2}\right) d x
\end{aligned}
$$

Int by parts $u=2-x, \quad d u=-d x$

$$
\begin{gathered}
d v=\sin \left(\frac{n \pi x}{2}\right) d x \quad v=\frac{-2}{n \pi} \cos \left(\frac{n \pi x}{2}\right) \\
b_{n}=\left.\frac{-2}{n \pi}(2-x) \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}-\int_{0}^{2} \frac{+2}{n \pi} \cos \left(\frac{n \pi x}{2}\right)(+1) d x \\
=\frac{-2}{n \pi}(2-2) \cos (n \pi)-\frac{-2}{n \pi}(2-0) \cos (0) \\
=\frac{2}{n \pi}(2)=\frac{4}{n \pi} \\
b_{n}=\frac{4}{n \pi} .
\end{gathered}
$$

November 16, $2021 \quad 21 / 48$

The shies is

$$
f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
$$

