November 17 Math 3260 sec. 51 Fall 2025

5.3 Visualizing Linear Transformations

We want to consider certain linear mappings from R? to R? that
correspond to geometric transformations.
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Figure: Scaling, shearing, rotations, reflections

Al

Notational Note: The notation X — ¥ is read “X maps to y.” It's a
common short hand for T(X) = y when T is some transformation.
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Scaling, Shear, and Rotation

» T:R?— R?given by T(X) = rxXis adilationif r >1anda
contraction if 0 < r < 1. The standard matrix

r 0
A—|:O r:|—l’12.

» S: R? — R? given by X — AX is a shear transformation if

1 k 10
A:{o 1], or A:[k 1}, ke R.

» R, : R?> - R? given by X — AyX is a rotation about the origin by

an angle ¢ in the c.clockwise direction, where o

% "29

-9
sind cosf

A [ cos f —sinﬁ]
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Rotation in Animation
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Rotation in Animation
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Reflection Through Axis
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Figure: The matrix to reflect through the xq-axis (left) or x»-axis (right).

Py : R? = R? Py ((X1,%)) = (X1, —Xo)
Py, : R? — R? Py, ((x1,X2)) = (—X1, X2)
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Summary of Geometric Transformations on R?

> Scaling: X — rkX, is a dilation if r > 1 and contraction if 0 < r < 1.

1

» Shear: X — AX where A = { 1k ] orA= [ 0 ] for constant k.

0 1 k 1
> Rotation (counter clockwise about the origin through angle 6): X — AgX
where A, — cosf —sind
= | sinf  cosh

> Reflection (through an axis):

Paltne) = | g 3 | G = G- o

Pl = | "5 T | ) = ()

We can combine these with the composition of transformations.

November 14, 2025 6/52



5.5 Compositions & Similarity

Suppose S: R" — RPand T : R° — R™ are linear transformations,
then we can ask about the composition

ToS:R"— R™.
T(se) = T(AX) = A (reX) = (A AS) %
S()?) = Asf, and T(Y) = AT?

How is the standard matrix for the composition related to the standard
matrices of Sand T?

Suppose

This give the primary motivation for the way matrix multiplication is
defined.
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Matrix Multiplication is Composition

X — AgX Asx — Ar(As)X
— —
lR” . L RP Ast J (F,’m ArAoR J
Ag~pxn Ar~mxp
ATAswmx n

P p¥~

Figure: X is mapped from R" to RP, then AgX is mapped from RP to R™. The
composition maps from R" to R™.

S:R"— R = As~pxn
T:RP—R"™ = Ar~mxp
ToS:R"—R™ = ArAs~mxn
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Example
Suppose that S : R® — R? is the linear transformation

S((x1,X2,X3)) = (2X1 + X2,2X1 + X2 + X3)
and suppose that T : R? — R® is the linear transformation

T ((x1,%)) = (=x1,3%1 — X2, —2X1 + 32) .
Find the standard matrix for the composition T o S.

Fbr‘ A_(-) we ‘/\-tc_é g(%.\) S(EIX .S(§7>
S((\’b,b)\) = <Z,17’ g(<0,\,uﬂ = <\)\7

S(¢e,0,0) = (o, L\s" [z \ oj

2 | \
o - AT’ w2 wneec T(‘e\\ o~c T(?'I—B

T( (\1573: <’\_,7>,’Z_v ) T(éo)ﬂﬁ‘ <OI'\J’3>
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Reflection in Line Through the Origin

Figure: We want a transformation T to reflect a vector through a line through
the origin that makes an angle 6 with the x;-axis.

We’ll do this in three steps.
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Start w/ Line & Vector

wiL

Figure: The line L makes an angle 6 with respect to the x;-axis. We want to
reflect the vector X through it.

—sinf cosf y = R-e(X)

Apply: Re(i):[ cosd sinﬁ}q7 P
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Rotate # Clockwise

Figure: Rotate through 6 clockwise using R_y. L becomes the x;-axis.
- 1 0] - o -
Next apply: Py, (¥) = { 0 1 ]y, let Z= Py (¥)
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Reflect Through x;-axis

Figure: Reflect through the x-axis using the Reflection transformation P, .

cosf —sind } .

Finally apply: Rg(z)—[ o2 thisisT(X), T(X) = Re(2)
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Rotate § Counter Clockwise

Figure: Then we rotation back through 6 in the counterclockwise direction by
applying the transformation R,.

So T(X) = Ry(Px, (R-(X))), and the transformation is the composition

T =RyoPy, oR_y
0 T

T oawdJe (ses
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Similarity

Our complicated reflection through a line that was not horizontal can
be done with the “simple” reflection through a horizontal line. Note that
the matrix for this is the product

Ar = AZjAp, A p.

1
)

Note that the form of this is a matrix sandwiched between a matrix and

its inverse. The complicated projection T is said to be similar to the

simple projection Py, .

Note that this only makes sense if we’re mapping from R" back to itself.
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Similarity
A linear transformation 7 : R” — R" is said to be similar to a

linear transformation S : R" — R" if there exists an invertible
linear transformation P : R” — R" such that

T=P'0SoP.

Likewise, an n x n matrix A is said to be similar to an nx n matrix
B, if there exists an invertible n x n matrix C such that

A=C'BC.

Note that this can be viewed either direction since T = P10 So P and
A= C~'BC imply

S=PoToP ' and B=CAC'
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Using Similarity
Consider the matrix A = [

A°.

-8
18

o _ [-8 3][-8 3] [-8 -3
A_AAAAAAAAA_[18 7H18 7] [18 7}

~~

nine factors of A.

_7 ] . Suppose we want to compute

[\

Compare that to computing D° if D = [ -

0

A RN RS

ST O | B e
o [
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[ -8 -3 =20 1 o [B
A_{18 7]’ D_[ 01}’ C_[—Z 3} ¢ _[21]
What if we know that D = C~' AC which means that A= CDC~'?
Show that D? = C~1'A2C and D3 = C~1A3C.

- oo - (AT ALY

- &' paCclVAC
= ATZAC = CAAC:CAC

v o - (A AC)
- AT (e CIAC
C'ATT,.AC

W
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Powers of Similar Matrices

If A and B are similar matrices, with B = C~1AC for some invertible
matrix C, then for every integer n > 1

B"=C'A"C.

This means that A2 = CD°C~". That’s two matrix multiplications
instead of eight matrix multiplications.
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Cn-= AC
coCACC
c™( - A
4 A -\
A - > C

SURRISE I E
L E Y
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) \ -\ 3(-5s 1) —S\’Z.}
-7 %) 2 \
3(sizy-2 -S|
cmY 4 REI3

-1528 -s 3
3039 623
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