November 17 Math 3260 sec. 51 Fall 2025

5.3 Visualizing Linear Transformations

We want to consider certain linear mappings from R^2 to R^2 that correspond to geometric transformations.



Figure: Scaling, shearing, rotations, reflections

Notational Note: The notation $\vec{x} \mapsto \vec{y}$ is read " \vec{x} maps to \vec{y} ." It's a common short hand for $T(\vec{x}) = \vec{y}$ when T is some transformation.

Scaling, Shear, and Rotation

► $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by $T(\vec{x}) = r\vec{x}$ is a dilation if r > 1 and a contraction if 0 < r < 1. The standard matrix

$$A = \left[\begin{array}{cc} r & 0 \\ 0 & r \end{array} \right] = rI_2.$$

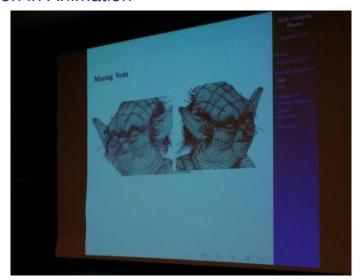
▶ $S: R^2 \to R^2$ given by $\vec{x} \mapsto A\vec{x}$ is a shear transformation if

$$A = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$$
, or $A = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$, $k \in R$.

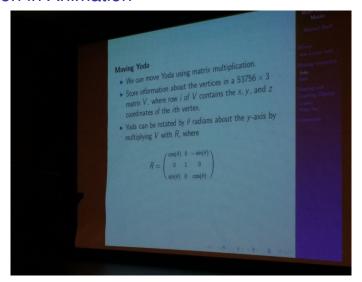
▶ $R_{\theta}: R^2 \to R^2$ given by $\vec{x} \mapsto A_{\theta}\vec{x}$ is a rotation about the origin by an angle θ in the c.clockwise direction, where

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Rotation in Animation



Rotation in Animation



Reflection Through Axis

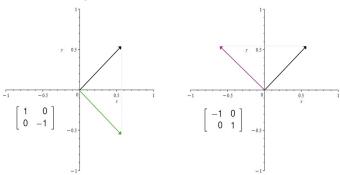


Figure: The matrix to reflect through the x_1 -axis (left) or x_2 -axis (right).

$$P_{x_1}: R^2 \to R^2 \quad P_{x_1}(\langle x_1, x_2 \rangle) = \langle x_1, -x_2 \rangle$$

$$P_{x_2}: R^2 \to R^2 \quad P_{x_2}(\langle x_1, x_2 \rangle) = \langle -x_1, x_2 \rangle$$



Summary of Geometric Transformations on R²

- ▶ **Scaling**: $\vec{x} \mapsto rl_2\vec{x}$, is a dilation if r > 1 and contraction if 0 < r < 1.
- ▶ **Shear**: $\vec{x} \mapsto A\vec{x}$ where $A = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ or $A = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$ for constant k.
- ▶ **Rotation** (counter clockwise about the origin through angle θ): $\vec{x} \mapsto A_{\theta}\vec{x}$ where $A_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$
- Reflection (through an axis):

$$P_{x_1}(\langle x_1, x_2 \rangle) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \langle x_1, x_2 \rangle = \langle x_1, -x_2 \rangle, \text{ or }$$

$$P_{x_2}(\langle x_1, x_2 \rangle) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \langle x_1, x_2 \rangle = \langle -x_1, x_2 \rangle.$$

We can combine these with the composition of transformations.

5.5 Compositions & Similarity

Suppose $S: \mathbb{R}^n \to \mathbb{R}^p$ and $T: \mathbb{R}^p \to \mathbb{R}^m$ are linear transformations, then we can ask about the composition

$$T \circ S : \mathbb{R}^n \to \mathbb{R}^m$$
.

$$T(S(\vec{x})) = T(A_s\vec{x}) = A_{\tau}(A_s\vec{x}) = (A_{\tau}A_s)\vec{x}$$

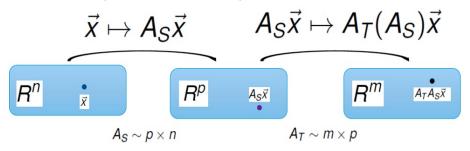
Suppose

$$S(\vec{x}) = A_S \vec{x}$$
, and $T(\vec{y}) = A_T \vec{y}$.

How is the standard matrix for the composition related to the standard matrices of S and T?

This give the primary motivation for the way matrix multiplication is defined.

Matrix Multiplication is Composition



$$A_T A_S \sim m \times n$$

Figure: \vec{x} is mapped from R^n to R^p , then $A_S \vec{x}$ is mapped from R^p to R^m . The composition maps from R^n to R^m .

$$S: R^{n} \longrightarrow R^{p} \implies A_{S} \sim p \times n$$

$$T: R^{p} \longrightarrow R^{m} \implies A_{T} \sim m \times p$$

$$T \circ S: R^{n} \longrightarrow R^{m} \implies A_{T}A_{S} \sim m \times n$$

Example

Suppose that $S: \mathbb{R}^3 \to \mathbb{R}^2$ is the linear transformation

$$S(\langle x_1, x_2, x_3 \rangle) = \langle 2x_1 + x_2, 2x_1 + x_2 + x_3 \rangle$$

and suppose that $T: \mathbb{R}^2 \to \mathbb{R}^3$ is the linear transformation

$$T(\langle x_1, x_2 \rangle) = \langle -x_1, 3x_1 - x_2, -2x_1 + 3x_2 \rangle.$$

Find the standard matrix for the composition $T \circ S$.

For
$$A_s$$
, we need $S(\vec{e}_1)$, $S(\vec{e}_2)$, $S(\vec{e}_3)$
 $S((1,0,0)) = (2,27, S((0,1,0)) = (1,17)$
 $S((0,0,0)) = (0,17)$ $A_s = \begin{bmatrix} 2 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$
From A_T , we need $T(\vec{e}_1) \approx T(\vec{e}_2)$
 $T((1,0)) = (-1,3,-2)$, $T((0,11)) = (0,-1,3)$

$$A_{\tau} = \begin{bmatrix} -1 & 6 \\ 3 & -1 \\ -2 & 3 \end{bmatrix}$$

$$A_{\tau \circ s} = A_{\tau} A_{s} = \begin{bmatrix} -1 & 0 \\ 3 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}$$

$$3 \times 2 = 2 \times 3$$

$$= \begin{bmatrix} -2 & -1 & 0 \\ 4 & 2 & -1 \\ 2 & 1 & 3 \end{bmatrix}$$

$$(T \circ S)(\vec{e}_1) = (-2, 4, 2)$$

Reflection in Line Through the Origin

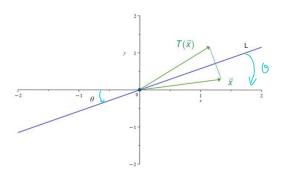


Figure: We want a transformation T to reflect a vector through a line through the origin that makes an angle θ with the x_1 -axis.

We'll do this in three steps.

Start w/ Line & Vector

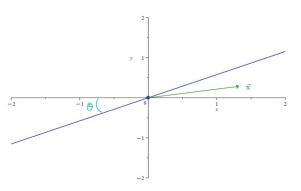


Figure: The line L makes an angle θ with respect to the x_1 -axis. We want to reflect the vector \vec{x} through it.

Apply:
$$R_{-\theta}(\vec{x}) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \vec{x}$$
, let $\vec{y} = R_{-\theta}(\vec{x})$

Rotate θ Clockwise

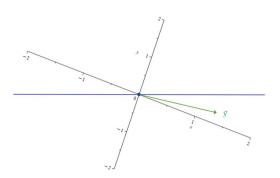


Figure: Rotate through θ clockwise using $R_{-\theta}$. L becomes the x_1 -axis.

Next apply:
$$P_{x_1}(\vec{y}) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \vec{y}$$
, let $\vec{z} = P_{x_1}(\vec{y})$

Reflect Through x_1 -axis

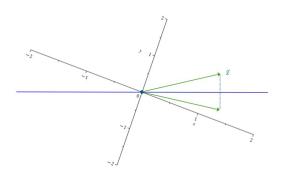


Figure: Reflect through the x_1 -axis using the Reflection transformation P_{x_1} .

Finally apply:
$$R_{\theta}(\vec{z}) = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \vec{z}$$
, this is $T(\vec{x})$, $T(\vec{x}) = R_{\theta}(\vec{z})$

Rotate θ Counter Clockwise

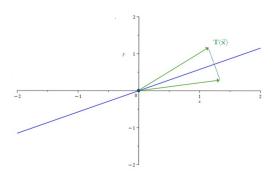


Figure: Then we rotation back through θ in the counterclockwise direction by applying the transformation R_{θ} .

So $T(\vec{x}) = R_{\theta}(P_{x_1}(R_{-\theta}(\vec{x})))$, and the transformation is the composition

$$T = R_{\theta} \circ P_{X_1} \circ R_{-\theta}$$

$$\uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \uparrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

November 14, 2025

Similarity

Our complicated reflection through a line that was not horizontal can be done with the "simple" reflection through a horizontal line. Note that the matrix for this is the product

$$A_T = A_{-\theta}^{-1} A_{P_{x_1}} A_{-\theta}.$$

$$\uparrow \qquad \qquad \land \qquad \qquad \land \qquad \qquad \bullet$$

Note that the form of this is a matrix sandwiched between a matrix and its inverse. The complicated projection T is said to be **similar** to the simple projection P_{x_1} .

Note that this only makes sense if we're mapping from R^n back to itself.

Similarity

A linear transformation $T: R^n \to R^n$ is said to be **similar** to a linear transformation $S: R^n \to R^n$ if there exists an invertible linear transformation $P: R^n \to R^n$ such that

$$T=P^{-1}\circ S\circ P.$$

Likewise, an $n \times n$ matrix A is said to be **similar** to an $n \times n$ matrix B, if there exists an invertible $n \times n$ matrix C such that

$$A=C^{-1}BC.$$

Note that this can be viewed either direction since $T = P^{-1} \circ S \circ P$ and $A = C^{-1}BC$ imply

$$S = P \circ T \circ P^{-1}$$
 and $B = CAC^{-1}$

Using Similarity

Consider the matrix $A = \begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix}$. Suppose we want to compute A^9 .

$$A^{9} = AAAAAAAAA = \underbrace{\begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix} \begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix} \cdots \begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix}}_{\text{nine factors of } A.}$$

Compare that to computing D^9 if $D = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}$.

$$D_s: DO = \begin{bmatrix} 0 & 1 \\ -S & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -S & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1_S \\ (-S)_S & 0 \end{bmatrix}$$

$$D_3: D_5D = \begin{pmatrix} 0 & 1_5 \\ 0 & 1_5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -5 & 0 \end{pmatrix} = \begin{pmatrix} (-5)_3 & 0 \\ 0 & 1_3 \end{pmatrix}$$

$$D_{\mathbf{v}}:=\begin{bmatrix}0&1_{\mathbf{v}}\\(s)_{\mathbf{v}}&0\end{bmatrix}$$

$$A = \begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix}, \quad D = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \quad C^{-1} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

What if we know that $D = C^{-1}AC$ which means that $A = CDC^{-1}$?

Show that $D^2 = C^{-1}A^2C$ and $D^3 = C^{-1}A^3C$.

$$D^2 = DD = (C^{\dagger}AC)(C^{\dagger}AC)$$

= $C^{\dagger}A(C,C^{\dagger})AC$
= $C^{\dagger}AT_2AC = C^{\dagger}AAC = C^{\dagger}A^2C$

$$D^{3} = D^{2}D = (C^{1}A^{2}C)(C^{2}AC)$$

$$= C^{1}A^{2}(C^{2}C)AC$$

$$= C^{1}A^{2}T = AC$$

$$=$$
 $C'A^2A$ C $=$ $C'A^3C$

Powers of Similar Matrices

If *A* and *B* are similar matrices, with $B = C^{-1}AC$ for some invertible matrix *C*, then for every integer $n \ge 1$

$$B^n = C^{-1}A^nC.$$

This means that $A^9 = CD^9C^{-1}$. That's two matrix multiplications instead of eight matrix multiplications.

$$cDc' = Acc'$$

$$cDc' = A$$

$$A^{9} = CD^{9}c^{-1}$$

 $= \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} (-2)^9 & 0 \\ 0 & 1^9 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$

 $= \left(\begin{bmatrix} -2 & 3 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} -2 & 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 3 & 1 \\ 3 & 1 \end{bmatrix}\right)$

 $A = \begin{bmatrix} -8 & -3 \\ 18 & 7 \end{bmatrix}, \quad D = \begin{bmatrix} -2 & 0 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \quad C^{-1} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$

CD = AC

D. CAC = CD: CCAC

November 14, 2025 22/52

$$= \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} 3(-s \mid z) & -512 \\ 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3(-512)-2 & -512-1 \\ 6(512)+6 & 2(512)+3 \end{pmatrix}$$

$$= \begin{pmatrix} -1538 & -513 \\ 3078 & 1027 \end{pmatrix}$$