November 18 Math 2306 sec. 51 Fall 2022

Section 17: Fourier Series: Trigonometric Series

Consider the following problem:
An undamped spring mass system has a mass of 2 kg attached to a spring with spring constant $128 \mathrm{~N} / \mathrm{m}$. The mass is driven by an external force $f(t)=2 t$ for $-1<t<1$ that is 2 -periodic so that $f(t+2)=f(t)$ for all $t>0$.

Common Models of Periodic Sources (e.g. Voltage)

Figure: We'd like to solve, or at least approximate solutions, to ODEs and PDEs with periodic right hand sides.

Series Representations for Functions

The goal is to represent a function by a series

$$
f(x)=\sum_{n=1}^{\infty} \text { (some simple functions) }
$$

In calculus, you saw power series $f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ where the simple functions were powers $(x-c)^{n}$.

Here, you will see how some functions can be written as series of trigonometric functions

$$
f(x)=\sum_{n=0}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

We'll move the $n=0$ to the front before the rest of the sum.

Some Preliminary Concepts

Suppose two functions f and g are integrable on the interval $[a, b]$. We define the inner product of f and g on $[a, b]$ as

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x
$$

We say that f and g are orthogonal on $[a, b]$ if

$$
\langle f, g\rangle=0 .
$$

The product depends on the interval, so the orthogonality of two functions depends on the interval.

Properties of an Inner Product

Let f, g, and h be integrable functions on the appropriate interval and let c be any real number. The following hold
(i) $\langle f, g\rangle=\langle g, f\rangle$
(ii) $\langle f, g+h\rangle=\langle f, g\rangle+\langle f, h\rangle$
(iii) $\langle c f, g\rangle=c\langle f, g\rangle$
(iv) $\langle f, f\rangle \geq 0$ and $\langle f, f\rangle=0$ if and only if $f=0$

Orthogonal Set

A set of functions $\left\{\phi_{0}(x), \phi_{1}(x), \phi_{2}(x), \ldots\right\}$ is said to be orthogonal on an interval $[a, b]$ if

$$
\left\langle\phi_{m}, \phi_{n}\right\rangle=\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x=0 \text { whenever } m \neq n .
$$

Note that any function $\phi(x)$ that is not identically zero will satisfy

$$
\langle\phi, \phi\rangle=\int_{a}^{b} \phi^{2}(x) d x>0
$$

Hence we define the square norm of ϕ (on $[a, b]$) to be

$$
\|\phi\|=\sqrt{\int_{a}^{b} \phi^{2}(x) d x}
$$

An Orthogonal Set of Functions
Consider the set of functions

$$
\{1, \cos x, \cos 2 x, \cos 3 x, \ldots, \sin x, \sin 2 x, \sin 3 x, \ldots\} \text { on }[-\pi, \pi] .
$$

Evaluate $\langle\cos (n x), 1\rangle$ and $\langle\sin (m x), 1\rangle$.

$$
\begin{aligned}
\langle\cos (n x), 1\rangle & =\int_{-\pi}^{\pi} \cos (n x) \cdot 1 d x \\
& =\left.\frac{1}{n} \sin (n x)\right|_{-\pi} ^{\pi} \\
& =\frac{1}{n} \sin (n \pi)-\frac{1}{n} \sin (-n \pi) \\
& =\frac{1}{n}(0)-\frac{1}{n}(0)=0
\end{aligned}
$$

$* \sin (n \pi)=0$ for any integer n $\langle\operatorname{Cos}(n \pi), 1\rangle=0$ for all n all $\cos (n x)$ are orth oyoud to 1 on $[-\pi, \pi]$.

$$
\begin{aligned}
\langle\sin (n x), 1\rangle & =\int_{-\pi}^{\pi} \sin (n x) 1 d x \\
& =\left.\frac{-1}{m} \cos (n x)\right|_{-\pi} ^{\pi} \\
& =\frac{-1}{m} \cos (m \pi)-\frac{-1}{m} \cos (-m \pi) \\
& =\frac{-1}{m} \cos (m \pi)+\frac{1}{m} \operatorname{Cos}(n \pi)=0
\end{aligned}
$$

$\langle\sin (m x\rangle, 1\rangle=0$ for all m so $\sin (m x)$ is orthogonal to 1 on $[-\pi, \pi]$.

An Orthogonal Set of Functions

Consider the set of functions
$\{1, \cos x, \cos 2 x, \cos 3 x, \ldots, \sin x, \sin 2 x, \sin 3 x, \ldots\}$ on $[-\pi, \pi]$.
It can easily be verified that
$\int_{-\pi}^{\pi} \cos n x d x=0$ and $\int_{-\pi}^{\pi} \sin m x d x=0$ for all $n, m \geq 1$,
$\int_{-\pi}^{\pi} \cos n x \sin m x d x=0$ for all $m, n \geq 1, \quad$ and
$\int_{-\pi}^{\pi} \cos n x \cos m x d x=\int_{-\pi}^{\pi} \sin n x \sin m x d x=\left\{\begin{array}{ll}0, & m \neq n \\ \pi, & n=m\end{array}\right.$,

An Orthogonal Set of Functions on $[-\pi, \pi]$

These integral values indicated that the set of functions

$$
\{1, \cos x, \cos 2 x, \cos 3 x, \ldots, \sin x, \sin 2 x, \sin 3 x, \ldots\}
$$

is an orthogonal set on the interval $[-\pi, \pi]$.

Key Point: This means that if we take any two functions f and g from this set, then

$$
\int_{-\pi}^{\pi} f(x) g(x) d x=0 \quad \text { if } f \text { and } g \text { are different functions! }
$$

Fourier Series

Suppose $f(x)$ is defined for $-\pi<x<\pi$. We would like to know how to write f as a series in terms of sines and cosines.

Task: Find coefficients (numbers) $a_{0}, a_{1}, a_{2}, \ldots$ and b_{1}, b_{2}, \ldots such that ${ }^{1}$

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

[^0]
Fourier Series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

The question of convergence naturally arises when we wish to work with infinite series. To highlight convergence considerations, some authors prefer not to use the equal sign when expressing a Fourier series and instead write

$$
f(x) \sim \frac{a_{0}}{2}+\cdots
$$

Herein, we'll use the equal sign with the understanding that equality may not hold at each point.

Convergence will be address later.

Finding an Example Coefficient

Let's find the coefficient b_{4}.
Start with the series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$, and multiply both sides by $\sin (4 x)$.
$f(x) \sin (4 x)=\frac{a_{0}}{2} \sin (4 x)+\sum_{n=1}^{\infty}\left(a_{n} \cos n x \sin (4 x)+b_{n} \sin n x \sin (4 x)\right)$.
Now, integrate from $-\pi$ to π
$\int_{-\pi}^{\pi} f(x) \sin (4 x) d x=\int_{-\pi}^{\pi} \frac{a_{0}}{2} \sin (4 x) d x+\int_{-\pi}^{\pi}\left(\sum_{n=1}^{\infty} a_{n} \cos (n x) \sin (4 x)+b_{n} \sin (n x) \sin (4 x)\right)$

$$
\begin{aligned}
& \int_{-\pi}^{\pi} f(x) \sin (4 x) d x= \\
& \underbrace{\frac{a_{0}}{2}}_{0_{0}^{\prime \prime}} \int_{-\pi}^{\pi} \sin (4 x) d x+\sum_{n=1}^{\infty}(\underbrace{\int_{-\pi}^{\pi}}_{n-\pi} \underbrace{\cos (n x) \sin }_{0}(4 x) d x+b_{n} \int_{-\pi}^{\pi} \sin (n x) \sin (4 x) d x) \\
& \quad\langle\sin 4 x, 1\rangle=\int_{-\pi}^{\pi} \sin (4 x) d x=0 \\
& \quad\langle\cos (n x) \sin (4 x)\rangle=0 \\
& \quad \int_{-\pi}^{\pi} f(x) \sin (4 x) d x=\sum_{n=1}^{\infty} b_{n} \int_{-\pi}^{\pi} \sin (n x) \sin (4 x) d x
\end{aligned}
$$

$$
\int_{-\pi}^{\pi} \sin (n x) \sin (4 x) d x=\left\{\begin{array}{cc}
0, & n \neq 4 \\
\pi, & n=4
\end{array}\right.
$$

$$
\int_{-\pi}^{\pi} f(x) \sin (4 x)=\pi b_{4}
$$

So $b_{4}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (u x) d x$

Finding Fourier Coefficients

Note that there was nothing special about seeking the $4^{\text {th }}$ sine coefficient b_{4}. We could have just as easily sought b_{m} for any positive integer m. We would simply start by introducing the factor $\sin (m x)$.

Moreover, using the same orthogonality property, we could pick on the a's by starting with the factor $\cos (m x)$-including the constant term since $\cos (0 \cdot x)=1$. The only minor difference we want to be aware of is that

$$
\int_{-\pi}^{\pi} \cos ^{2}(m x) d x= \begin{cases}2 \pi, & m=0 \\ \pi, & m \geq 1\end{cases}
$$

Careful consideration of this sheds light on why it is conventional to take the constant to be $\frac{a_{0}}{2}$ as opposed to just a_{0}.

The Fourier Series of $f(x)$ on $(-\pi, \pi)$

The Fourier series of the function f defined on $(-\pi, \pi)$ is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

Where

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad \text { and } \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

[^0]: ${ }^{1}$ We'll write $\frac{a_{0}}{2}$ as opposed to a_{0} purely for convenience.

