November 19 Math 2306 sec. 54 Fall 2021

Section 18: Sine and Cosine Series

We consider a function f defined on the interval $(0, p)$ and extend it to be even or odd.

Figure: Some function f shown in dark blue with even and odd extensions.

Half Range Cosine Series

For f defined on $(0, p)$ we can pretend that f is defined on $(-p, p)$ by setting

$$
f(-x)=f(x) \quad 0<x<p
$$

Then we can define the
Half range cosine series $f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{p}\right)$
where $a_{0}=\frac{2}{p} \int_{0}^{p} f(x) d x$ and $a_{n}=\frac{2}{p} \int_{0}^{p} f(x) \cos \left(\frac{n \pi x}{p}\right) d x$.

Half Range Sine

Suppose f is defined on $(0, p)$. We can extend f to be defined on $(-p, p)$ by setting

$$
f(-x)=-f(x) \quad 0<x<p .
$$

Then we can define the
Half range sine series $f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{p}\right)$
where $\quad b_{n}=\frac{2}{p} \int_{0}^{p} f(x) \sin \left(\frac{n \pi x}{p}\right) d x$.

Find the Half Range Sine Series of f

$$
f(x)=2-x, \quad 0<x<2
$$

We worked this out and found the half-range sine series

$$
f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right) .
$$

Find the Half Range Cosine Series of f

$$
\begin{aligned}
& f(x)=2-x, \quad 0<x<2<e^{-2} \\
& f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{2}\right) \\
& a_{0}=\frac{2}{2} \int_{0}^{2} f(x) d x=\int_{0}^{2}(2-x) d x \\
&=2 x-\left.\frac{x^{2}}{2}\right|_{0} ^{2}=4-2=2 \\
& a_{n}=\frac{2}{2} \int_{0}^{2} f(x) \cos \left(\frac{n \pi x}{2}\right) d x=\int_{0}^{2}(2-x) \cos \left(\frac{n \pi x}{2}\right) d x
\end{aligned}
$$

Int by parts:

$$
\begin{aligned}
u & =2-x, \quad d u=-d x \\
d v & =\cos \left(\frac{n \pi x}{2}\right) d x \quad v=\frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) \\
a_{n} & =\left.\frac{2}{n \pi}(2-x) \sin \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2}+\int_{0}^{2} \frac{2}{n \pi} \sin \left(\frac{n \pi x}{2}\right) d x \\
& =\left.\frac{2}{n \pi}\left(\frac{-2}{n \pi}\right) \cos \left(\frac{n \pi x}{2}\right)\right|_{0} ^{2} \\
& =\frac{-4}{n^{2} \pi^{2}}(\cos (n \pi)-\cos (0))
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{-4}{n^{2} \pi^{2}}\left((-1)^{n}-1\right) \\
a_{n} & =\frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right), \quad a_{0}=2
\end{aligned}
$$

The half range cosine series is

$$
f(x)=1+\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right) \cos \left(\frac{n \pi x}{2}\right)
$$

Example Continued...

We have two different half range series:

$$
\text { Half range sine: } \quad f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
$$

Half range cosine: $f(x)=1+\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{2}\right)$.
We have two different series representations for this function each of which converge to $f(x)$ on the interval $(0,2)$. The following plots show graphs of f along with partial sums of each of the series. When we plot over the interval $(-2,2)$ we see the two different symmetries. Plotting over a larger interval such as $(-6,6)$ we can see the periodic extensions of the two symmetries.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 10 terms of the sine series, and the series plotted over $(-6,6)$

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series.

Plots of f with Half range series

Figure: $f(x)=2-x, 0<x<2$ with 5 terms of the cosine series, and the series plotted over $(-6,6)$

Plot the Half-Range Sine Series

$$
f(x)=2-x, \quad 0<x<2 \quad f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi} \sin \left(\frac{n \pi x}{2}\right)
$$

Plot the Half-Range Cosine Series

$$
f(x)=2-x, \quad 0<x<2 \quad f(x)=1+\sum_{n=1}^{\infty} \frac{4\left(1-(-1)^{n}\right)}{n^{2} \pi^{2}} \cos \left(\frac{n \pi x}{2}\right)
$$

Solution of a Differential Equation

An undamped spring mass system has a mass of 2 kg attached to a spring with spring constant $128 \mathrm{~N} / \mathrm{m}$. The mass is driven by an external force $f(t)=2 t$ for $-1<t<1$ that is 2 -periodic so that $f(t+2)=f(t)$ for all $t>0$. Determine a particular solution x_{p} for the displacement for $t>0$.
for $\beta=0$ (no damping) the ODE is

$$
\begin{aligned}
& m x^{\prime \prime}+k x=f(t) \\
& m=2, k=128 \Rightarrow 2 x^{\prime \prime}+128 x=f(t) \\
& \Rightarrow x^{\prime \prime}+64 x=\frac{1}{2} f(t)
\end{aligned}
$$

We con write f as a Fourier series.
It will be a sine series.

From Nov 15,

$$
f(t)=2 \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)
$$

The SDE becomes

$$
x^{\prime \prime}+64 x=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)
$$

This is

$$
x^{\prime \prime}+64 x=\frac{2}{\pi} \sin (\pi t)-\frac{1}{\pi} \sin (2 \pi t)+\frac{2}{3 \pi} \sin (3 \pi t)+\ldots
$$

We con use the method of undetermined coefficients and look for x_{p} of the form

$$
X_{p}=\sum_{n=1}^{\infty} B_{n} S_{n}(n \pi t)
$$

Suppose x_{p} con be differentiated tern by term

$$
X_{p}^{\prime}=\sum_{n=1}^{\infty} \frac{d}{d t} B_{n} \operatorname{Sin}(n \pi t)
$$

$$
\begin{aligned}
&=\sum_{n=1}^{\infty} B_{n}(n \pi) \operatorname{Cos}(n \pi t) \\
& X_{p}{ }^{\prime \prime}=\sum_{n=1}^{\infty}-B_{n}(n \pi)^{2} \sin (n \pi t) \\
& X_{p}=\sum_{n=1}^{\infty} B_{n} \operatorname{Sin}(n \pi t) \\
& X_{p}{ }^{\prime \prime}+64 X_{p}=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t) \\
& \sum_{n=1}^{\infty}-B_{n}(n \pi)^{2} \sin (n \pi t)+\sum_{n=1}^{\infty} 64 B_{n} \operatorname{Sin}(n \pi t)=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)
\end{aligned}
$$

$$
\sum_{n=1}^{\infty}\left(-n^{2} \pi^{2}+64\right) B_{n} \sin (n \pi t)=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi t)
$$

Matching Coefficients

$$
\left(64-n^{2} \pi^{2}\right) B_{n}=\frac{2(-1)^{n+1}}{n \pi}
$$

Since $64-n^{2} \pi^{2} \neq 0$ for all n

$$
B_{n}=\frac{2(-1)^{n+1}}{n \pi\left(64-n^{2} \pi^{2}\right)}
$$

benc.

$$
X_{p}=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi\left(64-n^{2} \pi^{2}\right)} \sin (n \pi t)
$$

