November 1 Math 2306 sec. 51 Fall 2024

Section 13: The Laplace Transform

Consider and IVP with piecewise forcing,

" / g_ Eo, O<t<e

Lg +Rq+c—{ 0, > e
0, O0<t<H
mx" +bx" + kx = { acos(yt), i <t<t
0, t>1b

x(0) = xo, X'(0) = v

Remark: We can solve problems like this with our present
tools by solving multiple IVPs along with a continuity argument.
Laplace transforms will provide a new solution method that al-
lows us to solve the whole problem in a single process.




Section 13: The Laplace Transform

A quick word about functions of 2-variables:

Suppose G(s, t) is a function of two independent variables (s and t)
defined over some rectangle inthe plane a<t< b,c < s <d. Ifwe
compute an integral with respect to one of these variables, say t,
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» the result is a function of the remaining variable s, and

> the variable s is treated as a constant while integrating with
respect to t.



For Example...

Assume that s # 0 and b > 0. Compute the integral
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Integral Transform

An integral transform@ is a mapping that assigns to a function
f(t) another function F(s) via an integral of the form

/ " K(s.0f(t) dt

» The function K is called the kernel of the transformation.
» The limits a and b may be finite or infinite.

» The integral may be improper so that
convergence/divergence must be considered.

» This transform is linear in the sense that
b b b
/ K(s,t)(af(t)+,8g(t))dt:a/ K(s, t)f(t)dt+,8/ K(s, )g(t) ot.

More precisely, this is the definition of a linear integral transform.




The Laplace Transform

Definition: The Laplace Transform

Let () be piecewise continuous on [0, c0). The Laplace transform of
f, denoted .Z{f(t)} is given by.

L) = /OOO esti(t)ydt. = Y (s)

We will often use the upper case/lower case convention that Z{f(¢)}
will be represented by F(s). The domain of the transformation F(s) is
the set of all s such that the integral is convergent.

Remark 1: The kernel for the Laplace transform is K(s,t) = e~S!.

Remark 2: In general, s is considered a complex variable. We will generally
take s to be real, but this will not restrict our use of the Laplace transform.



Limits at Infinity e~
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Find' the Laplace transform of f(t) = 1.
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'Unless stated otherwise, the domain for each example is [0, cc). That is, f is
defined for 0 < t < oo.
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Find the Laplace transform of f(t) =
By debteon (83 [ 6
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A piecewise defined function
Find the Laplace transform of f defined by

o2t 0<t<10
f(t):{ 0. t>10
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We'll finish this next time. Note that
in this case, the integral isn't
going to be improper.



