## November 1 Math 2306 sec. 52 Fall 2021

## Section 16: Laplace Transforms of Derivatives and IVPs

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if

$$
\mathscr{L}\{y(t)\}=Y(s),
$$

then

$$
\begin{aligned}
\mathscr{L}\left\{\frac{d y}{d t}\right\} & =s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\} & =s^{2} Y(s)-s y(0)-y^{\prime}(0), \\
\vdots & \vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\} & =s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0) .
\end{aligned}
$$

## Solving IVPs



Figure: We use the Laplace transform to turn our DE into an algebraic equation. Solve this transformed equation, and then transform back.

## Solve the IVP

An LR-series circuit has inductance $L=1$ h, resistance $R=10 \Omega$, and applied force $E(t)$ whose graph is given below. If the initial current $i(0)=0$, find the current $i(t)$ in the circuit.

$$
L i^{\prime}+R i=E
$$



$$
E(t)=0-0 u(t-1)+E_{0} u(t-1)-E_{0} u(t-3)+0 u(t-3)
$$

LR Circuit Example

$$
L=1, \quad R=10
$$

$$
i^{\prime}+10 i=E_{0} u(t-1)-E_{0} u(t-3), \quad i(0)=0
$$

Let $\mathcal{L}\{i(t)\}=I(s)$

$$
\begin{aligned}
& \mathscr{L}\left\{i^{\prime}+10 i\right\}=\mathcal{L}\left\{E_{0} u(t-1)-E_{0} u(t-3)\right\} \\
& \mathscr{L}\left\{i^{\prime}\right\}+10 \mathcal{L}\{i\}=E_{0} \mathcal{L}\{u(t-1)\}-E_{0} \mathcal{I}\{u(t-3)\} \\
& s I(s)-i(\phi)+10 I(s)=E_{0} \frac{e^{-s}}{s}-E_{0} \frac{e^{-3 s}}{s} \\
& \quad 0_{i(0)=0}^{(s+10) I(s)}=E_{0} \frac{e^{-s}}{s}-E_{0} \frac{e^{-3 s}}{s} \\
& s
\end{aligned}
$$

$$
I(s)=\frac{E_{0} e^{-s}}{s(s+10)}-\frac{E_{0} e^{-3 s}}{s(s+10)}
$$

we con do a partial fraction decompon $\frac{1}{s(s+10)}$

$$
\begin{aligned}
& \frac{1}{s(s+10)}=\frac{A}{s}+\frac{B}{s+10} \text { clearfractions. } \\
& 1=A(s+10)+B s \\
& \text { set } s=0 \quad \left\lvert\,=10 A \Rightarrow A=\frac{1}{10}\right. \\
& S=-10 \quad \left\lvert\,=-10 B \Rightarrow B=\frac{-1}{10}\right. \\
& I(s)=E_{0} e^{-s}\left(\frac{\frac{1}{10}}{s}-\frac{\frac{1}{10}}{s+10}\right)-E_{0} e^{-3 s}\left(\frac{\frac{1}{10}}{s}-\frac{\frac{1}{60}}{s+10}\right)
\end{aligned}
$$

well use $\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a)$
we need to find

$$
\begin{aligned}
& \qquad f(t)=\mathcal{L}^{-1}\left\{E_{0}\left(\frac{1}{\frac{10}{s}}-\frac{\frac{1}{10}}{s+10}\right)\right\} \\
& f(t)=\frac{E_{0}}{10} \mathscr{L}^{-1}\left\{\frac{1}{s}\right\}-\frac{E_{0}}{10} \mathcal{L}^{-1}\left\{\frac{1}{s+10}\right\} \\
& =\frac{E_{0}}{10}-\frac{E_{0}}{10} e^{-10 t} \\
& I(s)=E_{0} e^{-s}\left(\frac{\frac{1}{60}}{s}-\frac{\frac{1}{10}}{s+10}\right)-E_{0} e^{-3 s}\left(\frac{\frac{1}{10}}{s}-\frac{\frac{1}{10}}{s+10}\right)
\end{aligned}
$$

The current $i(t)=\mathscr{L}^{-1}\{I(s)\}$

$$
i(t)=\left(\frac{E_{0}}{10}-\frac{E_{0}}{10} e^{-10(t-1)}\right) u(t-1)-\left(\frac{E_{0}}{10}-\frac{E_{0}}{10} e^{-10(t-3)}\right) u(t-3)
$$

Let's write $i(t)$ in traditional, stacked piecewise notation.

$$
\begin{aligned}
& i(t)=\left\{\begin{array}{l}
0, \quad 0 \leq t<1 \\
\frac{E_{0}}{10}-\frac{E_{0}}{10} e^{-10(t-1)}, \quad 1 \leq t<3 \\
\frac{E_{0}}{10} e^{-10(t-3)}-\frac{E_{0}}{10} e^{-10(t-1)}, t \geqslant 3
\end{array}\right. \\
& * \frac{E_{0}}{10}-\frac{E_{0}}{10} e^{-10(t-1)}-\frac{E_{0}}{10}+\frac{E_{0}}{10} e^{-10(t-3)}
\end{aligned}
$$

## Example

A 1 kg mass is attached to a spring with a spring constant of $10 \mathrm{~N} / \mathrm{m}$. A dashpot provides damping numerically equal to 2 times the instantaneous velocity. At time $t=0$ and again at time $t=2$ seconds, a unit impulse is applied. If the mass starts from rest at equilibrium, determine the displacement, $x(t)$, of the mass for all $t>0$.

To do this, use the method of Laplace transforms to solve the IVP

$$
x^{\prime \prime}+2 x^{\prime}+10 x=\delta(t-0)+\delta(t-2), \quad x(0)=0, \quad x^{\prime}(0)=0
$$

Recall that $\mathscr{L}\{\delta(t-a)\}=e^{-a s}$.

Notice that this ODE has the form $m x^{\prime \prime}+\beta x^{\prime}+k x=f(t)$. The applied impulse at $t=$ a seconds is modeled by $f(t)=\delta(t-a)$.

$$
\begin{aligned}
& x^{\prime \prime}+2 x^{\prime}+10 x=\delta(t-0)+\delta(t-2), \quad x(0)=0, \quad x^{\prime}(0)=0 \\
& \text { Let } \mathscr{L}\{x(t)\}=X(s) \\
& \mathcal{L}\left\{x^{\prime \prime}+2 x^{\prime}+10 x\right\}=\mathscr{L}\{\delta(t)+\delta(t-2)\} \\
& \mathcal{L}\left\{x^{\prime \prime}\right\}+2 \mathscr{L}\left\{x^{\prime}\right\}+10 \mathcal{L}\{x\}=\mathcal{L}\{\delta(t)\}+\mathcal{L}\{\delta(t-2)\} \\
& s^{2} X(s)-s x(0)-x^{\prime}(0)+2(s X-x(0))+10 X(s)=e^{0}+e^{-2 s} \\
& \left(s^{2}+2 s+10\right) X(s)=1+e^{-2 s} \\
& X(s)=\frac{1}{s^{2}+2 s+10}+\frac{e^{-2 s}}{s^{2}+2 s+10}
\end{aligned}
$$

Note for $s^{2}+2 s+10, b^{2}-4 a c=2^{2}-4 \cdot 1 \cdot 10=-36<0$
Complete the squaws.

$$
\begin{aligned}
s^{2}+2 s+10 & =s^{2}+2 s+1-1+10 \\
& =(s+1)^{2}+9
\end{aligned}
$$

$$
X(s)=\frac{1}{(s+1)^{2}+9}+\frac{e^{-2 s}}{(s+1)^{2}+9}
$$

we need $\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+9}\right\}=e^{-t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+9}\right\}$

$$
\begin{aligned}
& =e^{-t} \mathcal{L}^{-1}\left\{\frac{1}{3} \frac{3}{s^{2}+3^{2}}\right\} \\
& =\frac{1}{3} e^{-t} \sin (3 t) \quad \text { this is } \\
& f(t) \\
& X(s)=\frac{1}{(s+1)^{2}+9}+\frac{e^{-2 s}}{(s+1)^{2}+9} \\
& \text { The displacemat } x(t)=\mathscr{L}^{-1}\{X(s)\} \\
& x(t)=\frac{1}{3} e^{-t} \sin (3 t)+\frac{1}{3} e^{-(t-2)} \sin (3(t-2)) u(t-2)
\end{aligned}
$$

