November 20 Math 2306 sec. 51 Fall 2024

Section 16: Laplace Transforms of Derivatives and IVPs Systems of IVPs

We can solve a system of ODEs using Laplace transforms. Here, we'll consider systems that are

linear.

- having initial conditions at $t = 0$, and
- ▶ constant coefficient.

Let's see it in action (i.e. with a couple of examples).

Cramer's Rule

We can solve a linear system using substitution or elimination. Cramer's rule is quick for small (e.g., 2×2 or 3×3) square systems.

> *ax* + *by* = *e* $c x + dy = t$

Let $A = \left[\begin{array}{cc} a & b \ c & d \end{array} \right]$ be the coefficient matrix, and define $A_{\sf x}$ and $A_{\sf y}$ to be the matrices obtained from *A* by replacing the first, respectively second, column with the right hand sides of the equations.

$$
A_x = \left[\begin{array}{cc} e & b \\ f & d \end{array} \right], \text{ and } A_y = \left[\begin{array}{cc} a & e \\ c & f \end{array} \right].
$$

The solution of the system can be stated in terms of ratios of determinants.

$$
x = \frac{\det(A_x)}{\det(A)} \quad \text{and} \quad y = \frac{\det(A_y)}{\det(A)}.
$$

Example

Figure: If we label current i_2 as $x(t)$ and current i_3 as $y(t)$, we get the system of equations below. (Assuming $i_1(0) = 0.$)

Solve the system of equations

$$
\frac{dx}{dt} = -2x - 2y + 60, \quad x(0) = 0
$$

$$
\frac{dy}{dt} = -2x - 5y + 60, \quad y(0) = 0
$$

Let $X(s) = \chi(y(k))$, and $Y(s) = \chi(y(k))$.

$$
\frac{dx}{dt} = -2x - 2y + 60, \quad x(0) = 0
$$

$$
\frac{dy}{dt} = -2x - 5y + 60, \quad y(0) = 0
$$

$$
\&
$$
 { x' } = $\&$ { $-2x - 2y + 60$ }
= -2 $\&$ { x } - 2 $\&$ { y } + 60 $\&$ {1}

$$
S \times (s) - \pi (s) = -2 \times (s) - 2 \times (s) + \frac{60}{s}
$$

$$
\sqrt[3]{ {s \choose 2}} = \sqrt[3]{ {-2 \times -5 \choose 4} + 60}
$$

$$
S \times (s) - \pi (s) = -2 \times (s) - 5 \times (s) + \frac{60}{s}
$$

$$
sX = -2X \cdot 2Y + \frac{60}{s}
$$

\n
$$
sY = -2X - 5Y + \frac{60}{s}
$$

\n
$$
(s+2)X + 2Y = \frac{60}{s}
$$
 Use *General*
\n
$$
2X + (s+5)Y = \frac{60}{s}
$$

 $\frac{1}{2}$ mating from \approx $S+2$ 2 $\left(\frac{\sqrt{3}}{2} + 5\right)\left(\frac{\sqrt{3}}{2}\right) = \left(\frac{60}{5}\right)$ $A = \begin{bmatrix} s+2 & 2 \\ 2 & s+5 \end{bmatrix}$ $A_x = \begin{bmatrix} \frac{66}{5} & 2 \\ \frac{69}{5} & s+5 \end{bmatrix}$, $A_y = \begin{bmatrix} s+2 & \frac{69}{5} \\ 2 & \frac{69}{5} \end{bmatrix}$

 $d_{1}(\lambda) = (s+2)(s+5) - 2 \cdot 2 = s^{2} + 7s + 10 - 4 = s^{2} + 7s + 6$ $d\mathcal{L}(A_x) = \frac{60}{5}(s+5) - \frac{60}{5}(t) = \frac{60}{5}(s+5-2) = \frac{60}{5}(s+3)$ do (Ay) = $(s+2)$ $\frac{60}{5}$ - $2(\frac{60}{5})$ = $\frac{60}{5}(s+2-2)$ = $\frac{60}{5}(s)$ = (0)

 $Y = \frac{\partial \mathcal{X}(A_{Y})}{\partial \mathcal{X}(A)}$ = $\frac{60}{s^{2}+7s+6}$ = $\frac{60}{(s+1)(s+6)}$

we'll do PFD on both.

 $X = \frac{60(s+3)}{s(s+1)(s+6)} = \frac{A}{s} + \frac{B}{s+1} + \frac{C}{s+6}$ After some effort, A=30, B=-24, C=-6 $V_1 = \frac{60}{(5+1)(5+6)} = \frac{D}{5+1} + \frac{E}{5+6}$ Wed set D=12 ad E=-12 $x(x) = \frac{30}{5} - \frac{24}{5} - \frac{6}{56}$ $Y(s) = \frac{12}{s+1} - \frac{12}{s+1}$ The solution $X^{(k)} = \chi^{(k)}(X(s))$ and $y^{(k)} = \chi^{(k)}(Y(s))$

$$
X(t) = \sum_{s=1}^{t} \left\{ \frac{36}{s} - \frac{24}{s+1} - \frac{6}{s+6} \right\}
$$

$$
Y(t) = \sum_{s=1}^{t} \left\{ \frac{12}{s+1} - \frac{12}{s+6} \right\}
$$

$$
X(t) = 30 - 24 e^{-t} - 6 e^{-t}
$$

$$
Y(t) = 12 e^{-t} - 12 e^{-t}
$$

 $\chi(0) = 30 - 24e^{0} - 6e^{0} = 0$
 $\sqrt{(0)} = 12e^{0} - 12e^{0} = 0$ N cle:

Solving A System

Solve the system of initial value problems. Assume $t_0 \geq 0$ is fixed.

$$
x' - 4x - y = \delta(t - t_0), \quad x(0) = 0
$$

2x + y' = y, \quad y(0) = 0

Let $X = \mathcal{L}(\alpha)$ are $Y = \mathcal{L}(\alpha)$

$$
\chi(x'-y_{x-y}) = \chi(\delta(t-t_0))
$$

$$
\chi(z_{x+y'}) = \chi(y_1)
$$

$$
\chi(x') - \chi(y) - \chi(y) = e^{-t_0 s}
$$

$$
\chi(x') + \chi(y') = \chi(y)
$$

٠

 $S X - x(0) - Y X - Y = e^{tos}$ $2X + 54 - 96 = 4$ $5x - 4x - 4 = 6$ Cremer's rile $2X + 5Y - 4 = 0$ (t_{s-4}) + - 9 = $e^{t_{s-1}}$ $2X + (s-1)Y = 0$ $\begin{bmatrix} s-a & -1 \\ 2 & s-1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} e^{ts} \\ 0 \end{bmatrix}$

$$
A = \begin{bmatrix} s - 4 & 1 \\ 2 & s - 1 \end{bmatrix}
$$
, $A_x = \begin{bmatrix} e^{-ts - 1} \\ 0 & s - 1 \end{bmatrix}$, $A_y = \begin{bmatrix} s - 4 & e^{-ts - 1} \\ 2 & 0 \end{bmatrix}$

$$
dx(A) = (s-y)(s-1) - (-1)z = s^2 - 5s + 4 + 2 = s^2 - 5s + 6
$$

\n
$$
dx(A_x) = e^{ts}(s-1) - 0 = e^{-ts}(s-1)
$$

\n
$$
dx(A_y) = 0 - a e^{-ts} = -2e^{-ts}
$$

$$
X = \frac{dx(A_{x})}{dx(A)} = \frac{e^{-(6s)}(s-1)}{(s-2)(s-3)}
$$

$$
Y = \frac{dx(A_{y})}{dx^{4}(A)} = \frac{-2e^{-(6s)}(s-2)(s-3)}{(s-2)(s-3)}
$$

 $\chi(s) = e^{-\frac{t}{6}s} \frac{s-1}{(s-2)(s-3)}$, $\gamma(s) = e^{-\frac{t}{6}s} \left(\frac{-2}{(s-2)(s-3)}\right)$

BFA

 $\frac{s-1}{(s-2)(s-3)}$ = $\frac{A}{s-2}$ + $\frac{B}{s-3}$ A = -1 B = 2

 $\frac{-2}{(s-2)(s-3)}$ > $\frac{C}{s-2}$ + $\frac{D}{s-3}$, $C = 2D - 2$

 $\begin{pmatrix} 2k + 2k + 3k \end{pmatrix}$
 $\begin{pmatrix} 2k + 2k + 3k \end{pmatrix}$
 $\begin{pmatrix} 2k + 2k \end{pmatrix}$
 $\begin{pmatrix} 2k + 2k \end{pmatrix}$

 $f_{2}(t) = \int_{0}^{1} \left\{ \frac{-2}{(s-2)(s-3)} \right\} = \int_{0}^{1} \left(\frac{2}{s-2} - \frac{2}{s-3} \right)$

= $2e^{z^{+}} - 2e^{3^{+}}$

$$
y(t) = \hat{L} \left(X(s) \right) = f_{1}(t + t_{0}) \mu(t + t_{0})
$$
\n
$$
= \left(-e^{2(t - t_{0})} + 2e^{3(t - t_{0})} \right) \mu(t - t_{0})
$$
\n
$$
y(t) = \hat{L} \left(Y(s) \right) = f_{2}(t - t_{0}) \mu(t + t_{0})
$$
\n
$$
= \left(2e^{2(t - t_{0})} - 2e^{3(t - t_{0})} \right) \mu(t - t_{0})
$$

$$
X(t) = \left(-e^{2(t-t_*)} + 2e^{3(t-t_*)}\right)u(t-t_*)
$$

$$
Y(t) = \left(2e^{2(t-t_*)} - 2e^{3(t-t_*)}\right)u(t-t_*)
$$

Convolution

$$
ay'' + by' + cy = g(t), \quad y(0) = y_0, \quad y'(0) = y_1
$$

Recall the **zero state response** is $\mathcal{L}^{-1}\left\{\frac{G(s)}{as^2 + bs + c}\right\}$. We can write this as

$$
\mathscr{L}^{-1}\left\{G(s)H(s)\right\},
$$

where H is the transfer function¹.

The Zero State Response is the convolution of *g* **and the impulse response** *h***.**

If the impulse response is $h(t)$, then the zero state response can be written in terms of a convolution as

$$
\mathscr{L}^{-1}\left\{G(s)H(s)\right\}=\int_0^t g(\tau)h(t-\tau)\,d\tau
$$

¹ Recall that $H(s)$ is the reciprocol of the characteristic polynomial.

Example

Express the zero state response of the IVP in terms of a convolution.

$$
y'' + 100y = g(t), \quad y(0) = y_0, \quad y'(0) = y_1
$$
\n
$$
\int e^{t} \cos t \, dt, \quad \int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt, \quad \int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \sin t \, dt
$$
\n
$$
\int e^{t} \int e^{t} \sin t \, dt
$$
\n
$$
\int e^{t} \int e^{t} \sin t \, dt
$$
\n
$$
\int e^{t} \int e^{t} \sin t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n
$$
\int e^{t} \cos t \, dt
$$
\n

The zeros in part of the graphe is
$$
\frac{1}{2}
$$
 and $\frac{1}{2}$ is $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$ and $\frac{1}{2}$ is $\frac{1}{2}$.

It wasn't asked for, but there it is.