
November 27 Math 2306 sec. 51 Spring 2023
Section 16: Laplace Transforms of Derivatives and IVPs

Figure: We’ll use the Laplace transform as a tool for solving certain IVPs and
systems of IVPs. Our use will be restricted to IVPs with constant
coefficients and initial conditions given at t = 0.
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The Laplace Transform of Derivatives

For y = y(t) defined on [0,∞) having derivatives y ′, y ′′ and so
forth, if L {y(t)} = Y (s), then

L

{
dy
dt

}
= sY (s)− y(0)

L

{
d2y
dt2

}
= s2Y (s)− sy(0)− y ′(0)

L

{
d3y
dt3

}
= s3Y (s)− s2y(0)− sy ′(0)− y ′′(0)

...

L

{
dny
dtn

}
= snY (s)− sn−1y(0)− sn−2y ′(0)− · · · − y (n−1)(0).
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Use Laplace Transforms to Solve and IVP

• Start with constant coefficient IVP with IC at t = 0. For
examplea

ay ′′ + by ′ + cy = g(t), y(0) = y0, y ′(0) = y1.

• Let Y (s) = L {y(t)} and take the transform of both sides of
the ODE using any necessary results.
• Sub in the initial conditions where they appear in the

transformed equation.
• Use basic algebra to isolate the transform Y (s).
• Using whatever algebra or function identities that are

needed, take the inverse transform to obtain the solution

y(t) = L −1{Y (s)}.
aThe IVP can be of any order.
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The Unit Impulse

The last example we looked at was a circuit problem with a piecewise
constant voltage applied over a specific time interval [t0, t1].

Figure: The current in the circuit satisfied L
di

dt
+ Ri = E0U (t − t0)− E0U (t − t1)
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The Unit Impulse

In engineering applications, it is useful to have a model of a force (or
signal) that is applied over an infinitesimal time interval. That is, we
would like to model this process in the limit t1 → t0 while keeping the
total magnitude or strength (its integral) of the force fixed.

We can build such a model by considering rectangular1 functions and
reducing the width while keeping the area fixed.

1The shape doesn’t have to be a rectangle. It could be triangles, or a hump of a
cosine, or something else.
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The Unit Impulse
In order to build up to the definition of our unit impulse, we introduce the

family of piecewise constant, rectangular functions Rε(t) =
{ 1

2ε , |t | < ε
0, |t | > ε

.

Figure: The value of ε determines the height and width of the rectangle. But for every ε > 0, the
integral of Rε over the real line is 1.
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Unit Impulse
We can plot Rε for various values of ε and see that as ε gets smaller, the
rectangle gets narrow and tall. But the area of the rectangle is kept constant
at 1.

Figure: Rε(t) =
{ 1

2ε , |t | < ε
0, |t | > ε
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Unit Impulse

The Dirac delta function, denoted by δ(·), models a strong
instantaneous force. One way to define this function is as the limit

δ(t) = lim
ε→0

Rε(t).

More generally, we can move the location of the force to occur at time
t = a for some a > 0. We express this as δ(t − a) and refer to it as a
unit impulse at a or (centered at a).
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Unit Impulse δ(t − a)

The Dirac delta function is a limit of traditional functions, but it isn’t
really a function (in the input-output sense). It is an example of what is
called a generalized function, a functional, or a distribution. It is a
mathematical object whose properties are defined in combination with
integration. We can think of it as acting on continuous functions in
specific ways.

The following hold:

I
∫ ∞
−∞

δ(t − a) dt = 1 for any real number a.

I
∫ ∞
−∞

δ(t − a)f (t) dt = f (a) if f is continuous at a.

I L {δ(t − a)} = e−as for any constant a ≥ 0.

I In the sense of distributions, it is related to U via
d
dt

U (t − a) = δ(t − a).
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Delta as a Model of a Unit Impulse
The function δ(t) is used as a model of a force of magnitude 1 applied
instantaneously at time t = 0. Hence a function f (t) = f0δ(t − a) can be used
to model a force of magnitude f0 applied instantaneously at the time t = a.

For example, suppose our LR series circuit has zero applied voltage for t 6= t0.
A switch is closed and opened immediately to apply a voltage E0 at t = t0.
The differential equation modeling the charge on the capacitor is given by

L
di
dt

+ Ri = E0δ(t − t0).

Remark

We can’t work with the Dirac delta function the way we might work with other forcing
functions (e.g., exponentials or sines and cosines). But we do know what the Laplace
transform of δ(t− t0) is, so we will be able to solve IVPs that involve differential equations
of the form shown here.

November 27, 2023 10 / 35



Solve the IVP using the Laplace Transform
A 1 kg mass is suspended from a spring with spring constant 10 N/m.
A damper induces damping of 6 N per m/sec of velocity. The object
starts from rest at equilibrium. At time t = 1 second, a unit impulse
force is applied to the object. Determine the object’s position for t > 0.

The corresponding IVP for the situation described is

x ′′ + 6x ′ + 10x = δ(t − 1), x(0) = 0, x ′(0) = 0

Remember the model is mx ′′ + bx ′ + kx = f (t) with initial position x(0) and initial velocity x ′(0).
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x ′′ + 6x ′ + 10x = δ(t − 1), x(0) = 0, x ′(0) = 0

Figure: Graph of the solution to the IVP with unit impulse external force at t = 1.
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Transfer Function & Impulse Response

ay ′′ + by ′ + cy = g(t), (1)

Definition

The function H(s) =
1

as2 + bs + c
is called the transfer function

for the differential equation (2).

Remark 1: The transfer function is the Laplace transform of the
solution to the IVP

ay ′′ + by ′ + cy = δ(t), y(0) = 0, y ′(0) = 0.
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Transfer Function & Impulse Response

ay ′′ + by ′ + cy = g(t), (2)

Definition

The impulse response function, h(t), for the differential equa-
tion (2) is the inverse Laplace transform of the transfer function

h(t) = L −1{H(s)} = L −1
{

1
as2 + bs + c

}
.

Remark 2: The impulse response is the solution to the IVP

ay ′′ + by ′ + cy = δ(t), y(0) = 0, y ′(0) = 0.
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Convolution

ay ′′ + by ′ + cy = g(t), y(0) = y0, y ′(0) = y1

Recall the zero state response is L −1
{

G(s)
as2 + bs + c

}
. We can

write this as
L −1 {G(s)H(s)} ,

where H is the transfer function.

The Zero State Response is the convolution of g and the im-
pulse response h.

If the impulse response is h(t), then the zero state response can
be written in terms of a convolution as

L −1 {G(s)H(s)} =
∫ t

0
g(τ)h(t − τ)dτ
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Solving a System

We can solve a system of ODEs using Laplace transforms. Here, we’ll
consider systems that are

I linear,

I having initial conditions at t = 0, and

I constant coefficient.

Let’s see it in action (i.e. with a couple of examples).
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Example

Figure: If we label current i2 as x(t) and current i3 as y(t), we get the system
of equations below. (Assuming i1(0) = 0.)

Solve the system of equations

dx
dt

= −2x − 2y + 60, x(0) = 0

dy
dt

= −2x − 5y + 60, y(0) = 0
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dx
dt

= −2x − 2y + 60, x(0) = 0

dy
dt

= −2x − 5y + 60, y(0) = 0
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