November 29 Math 2306 sec. 51 Fall 2021

Sections 16, 17, \& 18

Let's solve the following IVP using the Laplace transform.

$$
y^{\prime \prime}+6 y^{\prime}+34 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

Determine $Y(s)=\mathscr{L}\{y(t)\}$ by taking the transform of the ODE, subbing in the IC, and isolating Y.

$$
\Psi(s)=\frac{7+s}{s^{2}+6 s+34}
$$

$$
y^{\prime \prime}+6 y^{\prime}+34 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

Now, do whatever algebra is necessary to write $Y(s)$ in a form from which the inverse transform can be taken.

$$
\begin{gathered}
Y(s)=\frac{s+7}{s^{2}+6 s+34}=\frac{s+7}{(s+3)^{2}+2 s} \\
s^{2}+6 s+34=(s+3)^{2}+2 s \\
Y(s)=\frac{s+3}{(s+3)^{2}+5^{2}}+\frac{4}{5} \frac{5}{(s+3)^{2}+5^{2}} \\
y(t)=\frac{s}{s^{2}+5^{2}} \\
e^{-3 t} \cos (s t)+\frac{4}{s} e^{-3 t} \sin (5 t) \\
s^{2}+5^{2}
\end{gathered}
$$

$y^{\prime \prime}+6 y^{\prime}+34 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1$
Evaluate the solution to the IVP $y(t)=\mathscr{L}^{-1}\{Y(s)\}$.

$$
\begin{array}{r}
Y(s)=\frac{s+3}{(s+3)^{2}+5^{2}}+\frac{4}{5} \frac{5}{(s+3)^{2}+5^{2}} \\
y(t)=e^{-3 t} \cos (5 t)+\frac{4}{5} e^{-3 t} \sin (5 t)
\end{array}
$$

$$
y^{\prime \prime}+6 y^{\prime}+34 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

$$
y(t)=e^{-3 t} \cos (5 t)+\frac{4}{5} e^{-3 t} \sin (5 t)
$$

Are there any quick ways to verify that this is probably correct?

- Verify initial Conditions
- Toke \mathcal{L} to make sure it goes back to previous step.
- [cos refenen oe wI roots of Charactrist. C polynomial

Example

A 1 kg mass is attached to a spring with spring constant $25 \mathrm{~N} / \mathrm{m}$. The mass is at rest at equilibrium. After $t=2$ seconds, a unit impulse force $f(t)=\delta(t-2)$ is applied. Assuming that there is no damping, which of the following IVPs governs the displacement of the mass?
(a) $25 x^{\prime \prime}+x=0, \quad x(0)=\delta(t-2), \quad x^{\prime}(0)=0$
(b) $\quad x^{\prime \prime}+25 x=2, \quad x(0)=0, \quad x^{\prime}(0)=0$
(c) $\quad x^{\prime \prime}+25 x=\delta(t-2), \quad x(\emptyset)=0, \quad x^{\prime}(0)=0$
(d) $\quad x^{\prime \prime}+2 x^{\prime}+25 x=0, \quad x(0)=0, \quad x^{\prime}(0)=0$

Example Continued...
Letting $X(s)=\mathscr{L}\{x(t)\}$, take the Laplace transform and isolate $X(s)$.

$$
\begin{gathered}
x^{\prime \prime}+25 x=\delta(t-2), \quad x(0)=0, \quad x^{\prime}(0)=0 \\
\mathscr{L}\{\delta(t-a)\}=e^{-a s} \text { for } \quad a \geqslant 0 . \\
X(s)=\frac{e^{-2 s}}{s^{2}+25} \\
\mathscr{L}\left\{x^{\prime \prime}+25 x\right\}=\mathscr{L}\{\delta(t-2)\} \\
s^{2} X(s)-s x(0)-x^{\prime}(0)+25 x=e^{-2 s}
\end{gathered}
$$

Example Continued...
Take the inverse Laplace transform to determine the displacement $x(t)=\mathscr{L}^{-1}\{X(s)\}$.

$$
\begin{gathered}
X(s)=\frac{e^{-2 s}}{s^{2}+5^{2}} \\
\mathcal{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a), \mathscr{L}^{-1}\{F(s)\}=f(t) \\
F(s)=\frac{1}{s^{2}+5^{2}}=\frac{1}{s} \frac{s}{s^{2}+5^{2}} \xrightarrow{\mathcal{L}^{\prime}} f(t)=\frac{1}{5} \sin (s t) \\
x(t)=\frac{1}{s} \sin (s(t-2)) u(t-2)
\end{gathered}
$$

$$
x^{\prime \prime}+25 x=\delta(t-2), \quad x(0)=0, \quad x^{\prime}(0)=0
$$

$$
x(t)=\frac{1}{5} \sin (5(t-2)) \mathscr{U}(t-2)
$$

Are there any quick ways to verify that this is probably correct?

- Since $\delta(t-2)$ is in the ODE, $U(t-2)$
should be in the solution.
- $m^{2}+2 S \Rightarrow$ solutions would be

$$
\cos (5 t) \text { and/ or } \sin (5 t)
$$

Fourier Series

Consider the function $f(x)=\left\{\begin{array}{lr}x+1, & -1<x<0 \\ 0, & 0<x<1\end{array}\right.$.
Identify p, and determine whether f is even, odd, or neither.

$$
P=1 \text { symmetry? no sym y }
$$

$f(x)=\left\{\begin{array}{lr}x+1, & -1<x<0 \\ 0, & 0<x<1\end{array}\right.$
$p=1$ and this function doesn't have symmetry.
Find a_{0}.

$$
\begin{aligned}
a_{0} & =\frac{1}{1} \int_{-1} f(x) d x \\
& =\int_{1}^{0}(x+1) d x=\frac{1}{2}
\end{aligned}
$$

This is as far as we got. The a's and b's are on the following slides.
$f(x)=\left\{\begin{array}{lr}x+1, & -1<x<0 \\ 0, & 0<x<1\end{array}\right.$

$$
a_{0}=\frac{1}{2}
$$

Find a_{n}.
$f(x)=\left\{\begin{array}{lr}x+1, & -1<x<0 \\ 0, & 0<x<1\end{array}\right.$

$$
a_{n}=\frac{1-(-1)^{n}}{n^{2} \pi^{2}}
$$

Find b_{n}.

$$
\begin{aligned}
& f(x)=\left\{\begin{array}{lr}
x+1, & -1<x<0 \\
0, & 0<x<1
\end{array}\right. \\
& \quad a_{0}=\frac{1}{2}, \quad a_{n}=\frac{1-(-1)^{n}}{n^{2} \pi^{2}}, \quad b_{n}=-\frac{1}{n \pi}
\end{aligned}
$$

Write the Fourier series for f.

$$
f(x)=\left\{\begin{array}{lr}
x+1, & -1<x<0 \\
0, & 0<x<1
\end{array}\right. \text { Let's plot its Fourier series. }
$$

$$
f(x)=\frac{1}{4}+\sum_{n=1}^{\infty}\left[\frac{1-(-1)^{n}}{n^{2} \pi^{2}} \cos (n \pi x)-\frac{1}{n \pi} \sin (n \pi x)\right]
$$

The series would be the pink plot (plus the blue one)

