November 29 Math 2306 sec. 51 Fall 2021

Sections 16, 17, & 18

Let's solve the following IVP using the Laplace transform.

$$y'' + 6y' + 34y = 0$$
, $y(0) = 1$, $y'(0) = 1$

Determine $Y(s) = \mathcal{L}\{y(t)\}$ by taking the transform of the ODE, subbing in the IC, and isolating Y.

$$Y(s) = \frac{7+s}{s^2+6s+34}$$

$$y'' + 6y' + 34y = 0$$
, $y(0) = 1$, $y'(0) = 1$

Now, do whatever algebra is necessary to write Y(s) in a form from which the inverse transform can be taken.

$$Y(s) = \frac{s+7}{s^2+6s+34} = \frac{s+7}{(s+3)^2+25}$$

$$Y(s) = \frac{s+3}{(s+3)^2 + 5^2} + \frac{4}{5} \cdot \frac{5}{(s+3)^2 + 5^2}$$

$$y(t) = e^{3t} C_{s}(St) + \frac{4}{s} e^{3t} S_{in}(St) = 0.00$$
November 24, 2021 2/16

$$y'' + 6y' + 34y = 0$$
, $y(0) = 1$, $y'(0) = 1$

Evaluate the solution to the IVP $y(t) = \mathcal{L}^{-1}\{Y(s)\}.$

$$Y(s) = \frac{s+3}{(s+3)^2 + 5^2} + \frac{4}{5} \frac{5}{(s+3)^2 + 5^2}$$

$$y'' + 6y' + 34y = 0$$
, $y(0) = 1$, $y'(0) = 1$

$$y(t) = e^{-3t}\cos(5t) + \frac{4}{5}e^{-3t}\sin(5t).$$

Are there any quick ways to verify that this is probably correct?

- · Voidy inital Conditions
 - . Take of to make sure it goes back to pereviour step.
 - cross reference w/ roots of Charactrist. c

Example

A 1 kg mass is attached to a spring with spring constant 25 N/m. The mass is at rest at equilibrium. After t=2 seconds, a unit impulse force $f(t)=\delta(t-2)$ is applied. Assuming that there is no damping, which of the following IVPs governs the displacement of the mass?

(a)
$$25x''+x=0$$
, $x(0)=\delta(t-2)$, $x'(0)=0$

(b)
$$x''+25x=2$$
, $x(0)=0$, $x'(0)=0$

(c)
$$x'' + 25x = \delta(t-2)$$
, $x(0) = 0$, $x'(0) = 0$

(d)
$$x''+2x'+25x=0$$
, $x(0)=0$, $x'(0)=0$

5/16

Example Continued...

Letting $X(s) = \mathcal{L}\{x(t)\}$, take the Laplace transform and isolate X(s).

$$x'' + 25x = \delta(t-2), \quad x(0) = 0, \quad x'(0) = 0$$

$$X(s) = \frac{e}{s^{2} + 25}$$

$$f(x'' + 25x) = f(s(t-2))$$

$$s^{2}X(s) - sX(s) - X'(s) + 25X = e^{2s}$$

Example Continued...

Take the inverse Laplace transform to determine the displacement $x(t) = \mathcal{L}^{-1}\{X(s)\}.$

$$X(s) = \frac{e^{-2s}}{s^2 + 5^2}$$

$$\vec{\mathcal{L}} \left(\vec{e}^{as} F(s) \right) = f(t-a) \mathcal{U}(t-a), \quad \vec{\mathcal{L}} \left(F(s) \right) = f(t)$$

$$F(s) = \frac{1}{s^2 + 5^2} = \frac{1}{s} \frac{s}{s^2 + 5^2} \quad \vec{\mathcal{L}} \Rightarrow f(t) = \frac{1}{s} \sin(st)$$

$$\times (t) = \frac{1}{s} \sin(s(t-2)) \mathcal{U}(t-2)$$

$$x'' + 25x = \delta(t - 2), \quad x(0) = 0, \quad x'(0) = 0$$

$$x(t) = \frac{1}{5}\sin(5(t-2))\mathcal{U}(t-2).$$

Are there any quick ways to verify that this is probably correct?

. Since & (t.21) is in the ODE,
$$\mathcal{U}(t-2)$$

Should be in the solution.
• m²+28 ⇒ solutions would be
Cos (5+) and Sin (5+)

Fourier Series

Consider the function
$$f(x) = \begin{cases} x+1, & -1 < x < 0 \\ 0, & 0 < x < 1 \end{cases}$$
.

Identify p, and determine whether f is even, odd, or neither.

$$f(x) = \begin{cases} x+1, & -1 < x < 0 \\ 0, & 0 < x < 1 \end{cases}$$

p = 1 and this function doesn't have symmetry.

Find a_0 .

$$a_{\circ} = \frac{1}{1} \int_{-1}^{1} f(x) dx$$

$$= \int_{-1}^{0} (x+1) dx = \frac{1}{2}$$

This is as far as we got. The a's and b's are on the following slides.

November 24, 2021 10/16

$$f(x) = \begin{cases} x+1, & -1 < x < 0 \\ 0, & 0 < x < 1 \end{cases}$$
$$a_0 = \frac{1}{2}$$

Find a_n .

$$f(x) = \begin{cases} x+1, & -1 < x < 0 \\ 0, & 0 < x < 1 \end{cases}$$
$$a_n = \frac{1 - (-1)^n}{n^2 \pi^2}$$

Find b_n .

$$f(x) = \begin{cases} x+1, & -1 < x < 0 \\ 0, & 0 < x < 1 \end{cases}$$
$$a_0 = \frac{1}{2}, \quad a_n = \frac{1 - (-1)^n}{n^2 \pi^2}, \quad b_n = -\frac{1}{n\pi}$$

Write the Fourier series for f.

 $f(x) = \begin{cases} x+1, & -1 < x < 0 \\ 0, & 0 < x < 1 \end{cases}$ Let's plot its Fourier series.

$$f(x) = \frac{1}{4} + \sum_{n=1}^{\infty} \left[\frac{1 - (-1)^n}{n^2 \pi^2} \cos(n\pi x) - \frac{1}{n\pi} \sin(n\pi x) \right]$$

The series would be the pink plot (plus the blue one)

