November 29 Math 2306 sec. 52 Spring 2023

Section 16: Laplace Transforms of Derivatives and IVPs

Figure: We'll use the Laplace transform as a tool for solving certain IVPs and systems of IVPs. Our use will be restricted to IVPs with constant coefficients and initial conditions given at $t=0$.

The Laplace Transform of Derivatives

For $y=y(t)$ defined on $[0, \infty)$ having derivatives $y^{\prime}, y^{\prime \prime}$ and so forth, if $\mathscr{L}\{y(t)\}=Y(s), \quad$ then

$$
\begin{aligned}
\mathscr{L}\left\{\frac{d y}{d t}\right\} & =s Y(s)-y(0) \\
\mathscr{L}\left\{\frac{d^{2} y}{d t^{2}}\right\} & =s^{2} Y(s)-s y(0)-y^{\prime}(0) \\
\mathscr{L}\left\{\frac{d^{3} y}{d t^{3}}\right\} & =s^{3} Y(s)-s^{2} y(0)-s y^{\prime}(0)-y^{\prime \prime}(0) \\
& \vdots \\
\mathscr{L}\left\{\frac{d^{n} y}{d t^{n}}\right\} & =s^{n} Y(s)-s^{n-1} y(0)-s^{n-2} y^{\prime}(0)-\cdots-y^{(n-1)}(0) .
\end{aligned}
$$

Use Laplace Transforms to Solve and IVP

- Start with constant coefficient IVP with IC at $t=0$. For example ${ }^{a}$

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{1} .
$$

- Let $Y(s)=\mathscr{L}\{y(t)\}$ and take the transform of both sides of the ODE using any necessary results.
- Sub in the initial conditions where they appear in the transformed equation.
- Use basic algebra to isolate the transform $Y(s)$.
- Using whatever algebra or function identities that are needed, take the inverse transform to obtain the solution

$$
y(t)=\mathscr{L}^{-1}\{Y(s)\}
$$

${ }^{\text {a }}$ The IVP can be of any order.

Solving A System
Solve the system of initial value problems. Assume $t_{0} \geq 0$ is fixed.

$$
\begin{aligned}
x^{\prime}-4 x-y & =\delta\left(t-t_{0}\right), & & x(0)=0 \\
2 x+y^{\prime} & =y, & & y(0)=0
\end{aligned}
$$

Let $X(s)=\mathscr{L}\{x(t)\}$ and $Y(s)=\mathscr{L}\{y(t))$.

$$
\begin{gathered}
\mathscr{L}\left\{x^{\prime}-4 x-y\right\}=\mathcal{L}\left\{\delta\left(t-t_{0}\right)\right\} . \\
\mathcal{L}\left\{2 x+y^{\prime}\right\}=\mathscr{L}\{y\} \\
s X(s)-X(0)-4 X(s)-Y(s)=e^{-t_{0} s} \\
0^{\prime} \\
2 X(s)+s Y(s)-y(0)=Y(s) \\
0^{\prime \prime}
\end{gathered}
$$

$$
\begin{aligned}
s X(s)-4 X(s)-Y(s) & =e^{-t_{0} s} \\
2 X(s)+s Y(s)-Y(s) & =0 \\
(s-4) X(s)-Y(s) & =e^{-t_{0} s} \\
2 X(s)+(s-1) Y(s) & =0
\end{aligned}
$$

Well use Creamer's rube. In matrix format,

$$
\left[\begin{array}{cc}
s-4 & -1 \\
2 & s-1
\end{array}\right]\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
e^{-t_{0 s}} \\
0
\end{array}\right]
$$

Let $A=\left[\begin{array}{cc}s-4 & -1 \\ 2 & s-1\end{array}\right], A_{X}=\left[\begin{array}{cc}e^{-t_{0} s} & -1 \\ 0 & s-1\end{array}\right], A_{Y}=\left[\begin{array}{cc}s-4 & e^{-t_{0} s} \\ 2 & 0\end{array}\right]$

$$
\begin{aligned}
& \operatorname{det}(A)=(s-4)(s-1)+2=s^{2}-5 s+4+2=s^{2}-5 s+6=(s-2)(s-3) \\
& \operatorname{det}\left(A_{X}\right)=e^{-t_{0} s}(s-1)-0=e^{-t_{0}}(s-1) \\
& \operatorname{dtt}\left(A_{4}\right)=0-2 e^{-t_{0} s}=-2 e^{-t_{0} s} \\
& X(s)=\frac{\operatorname{det}\left(A_{X}\right)}{\operatorname{det}(A)}=\frac{e^{-t_{0} s}(s-1)}{(s-2)(s-3)}=e^{-t_{0} s} \frac{s-1}{(s-2)(s-3)} \\
& Y(s)=\frac{\operatorname{dt}\left(A_{Y}\right)}{\operatorname{dt}(A)}=\frac{-2 e^{-t_{0} s}}{(s-2)(s-3)}=e^{-t_{0} s} \frac{-2}{(s-2)(s-3)} \\
& \frac{s-1}{(s-2)(s-3)}=\frac{2}{s-3}-\frac{1}{s-2} \\
& \frac{-2}{(s-2)(s-3)}=\frac{2}{s-2}-\frac{2}{s-3}
\end{aligned}
$$

$$
\begin{aligned}
& X(s)=e^{-t_{0} s}\left(\frac{2}{s-3}-\frac{1}{s-2}\right) \\
& Y(s)=e^{-t_{0} s}\left(\frac{2}{s-2}-\frac{2}{s-3}\right)
\end{aligned}
$$

For x, we need

$$
f(t)=\mathcal{L}^{-1}\left\{\frac{2}{s-3}-\frac{1}{s-2}\right\}=2 e^{3 t}-e^{2 t}
$$

then $x(t)=\left(2 e^{3\left(t-t_{0}\right)}-e^{2\left(t-t_{0}\right)}\right) u\left(t-t_{0}\right)$

For y, we need

$$
g(t)=\mathcal{L}^{-1}\left\{\frac{2}{s-2}-\frac{2}{s-3}\right\}=2 e^{2 t}-2 e^{3 t}
$$

then $y(t)=\left(2 e^{2\left(t-t_{0}\right)}-2 e^{3\left(t-t_{0}\right)}\right) u\left(t-t_{0}\right)$

The solution to the system of IVEs is

$$
\begin{aligned}
& x(t)=\left(2 e^{3\left(t-t_{0}\right)}-e^{2\left(t-t_{0}\right)}\right) u\left(t-t_{0}\right) \\
& y(t)=\left(2 e^{2\left(t-t_{0}\right)}-2 e^{3\left(t-t_{0}\right)}\right) u\left(t-t_{0}\right)
\end{aligned}
$$

