November 6 Math 2306 sec. 51 Fall 2024

Section 14: Inverse Laplace Transforms

We're going to use the Laplace transform to solve IVPs. So in addition
to taking a transform to go from a function of t to a function of s, we’ll
want to go backwards.

Question: Given F(s) can we find a function f(t) such that
ZL{f(t)} = F(s)?

Inverse Laplace Transform

Let F(s) be a function. An inverse Laplace transform of F is a
piecewise continuous function f(t) provided Z{f(t)} = F(s). We
will use the notation

L7YUF(s)} = f(t) i 2{f(t)} = F(s).




A Table of Inverse Laplace Transforms
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The inverse Laplace transform is also linear so that
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Using a Table

When using a table of Laplace transforms, the expression must match
exactly. For example,
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Note that n = 3, so there must be 3! in the numerator and the power
4=3+1ons.
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Remark: The function F(s) often requires some amount of
manimpulation to get it to look like a table entry. There are a few
common tricks of the trade to taking inverse Laplace transforms.



Find the Inverse Laplace Transform
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Example: Evaluate
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Example: Evaluate
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Convolutions & Laplace Transforms
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As an integral, it is clear that the transform or inverse transform of a product is
NOT the product of the transforms. That is

Z{f()g(t)}#2{f(1)}Z{g(t)}

Question: Consider 1 { } Is it useful to note that

and similarly
L HF(s)G(s)}#2 {F(s)}.2 ' {G(s)}

There is a special type of product of functions that can be used to evaluate an
inverse transform of the form .Z~"{F(s)G(s)}. The special product is called a
convolution



Convolution

Let f and g be piecewise continuous on [0, o) and of exponential

order ¢ for some ¢ > 0. The convolution of f and g is denoted
by fxg and is defined by

(fxg)(t /f g(t—7)dr

Remark: In a more general setting in which functions of interest are defined on
(—o0, ), the convolution is typically defined as

(r+9)0) = [~ f(nlt-r)dr

If the functions f(t) and g(t) are assigned to take the value of zero for t < 0, this
definition reduces to the one given here.



Example

Compute the convolution of f( )=e3and g(t) = e~

(fxg)(t /‘f g(t—7)dr
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Laplace Transforms & Convolutions

The Laplace transform of a convolution is related to the product of Laplace
transforms.

Suppose Z{f(t)} = F(s) and Z{g(t)} = G(s). Then

Z{fxg} = F(s)G(s)

Suppose .Z~{F(s)} = f(t) and Z~{G(s)} = g(t). Then
Z7HF(s)G(8)} = (F+g)(1)

Remark: This is the same theorem stated first from the perspective of a
Laplace transform and then from the perspective of an inverse Laplace
transform.



Example

Use the convolution to evaluate
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