November 6 Math 2306 sec. 52 Spring 2023

Section 14: Inverse Laplace Transforms

Definition:

Let $f(t)$ be piecewise continuous on $[0, \infty)$. The Laplace transform of f, denoted $\mathscr{L}\{f(t)\}$ or $F(s)$ is given by.

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Inverse Laplace Transform

Let $F(s)$ be a function. An inverse Laplace transform of F is a piecewise continuous function $f(t)$ provided $\mathscr{L}\{f(t)\}=F(s)$. We will use the notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { if } \quad \mathscr{L}\{f(t)\}=F(s) .
$$

Example: Use a Table to Evaluate
(c) $\mathscr{L}^{-1}\left\{\frac{s+4}{s^{2}-4}\right\}$

Use Partial fraction decomp

$$
\begin{aligned}
& \frac{s+4}{(s-2)(s+2)}=\frac{A}{s-2}+\frac{B}{s+2} \quad \text { clear fractions } \\
& s+4=A(s+2)+B(s-2)
\end{aligned}
$$

Set $s=2$

$$
2+4=A(2+2)+B(2-2)
$$

$$
6=Y A \quad \Rightarrow A=\frac{6}{4}=\frac{3}{2}
$$

$$
\begin{aligned}
s=-2 \quad-2+4 & =A(-2+2)+B(-2-2) \\
2 & =-4 B \Rightarrow B=\frac{2}{\sqrt{4}}=\frac{-1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}^{-1}\left\{\frac{s+4}{s^{2}-4}\right\} & =\mathcal{L}^{-1}\left\{\frac{\frac{3}{2}}{s-2}-\frac{\frac{1}{2}}{s+2}\right\} \\
& =\frac{3}{2} \mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\}-\frac{1}{2} \mathcal{L}^{-1}\left\{\frac{1}{s-(-2)}\right\} \\
& =\frac{3}{2} e^{2 t}-\frac{1}{2} e^{-2 t}
\end{aligned}
$$

A Look Ahead: Solving IVPs

If $f(t)$ is defined on $[0, \infty)$, is differentiable, and has Laplace transform $F(s)=\mathscr{L}\{f(t)\}$, then*

$$
\mathscr{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

Use this result to solve the initial value problem

$$
y^{\prime}(t)+4 y(t)=16 t, \quad y(0)=1
$$

Let's assume that $y(t)$ has a Laplace transform.
Let $\mathscr{L}\left\{_{y}(t)\right\}=\Psi(s)$.
Take the tronstorn of both sides of the ODE.

$$
\begin{aligned}
& \quad y^{\prime}(t)+4 y(t)=16 t, \quad y(0)=1 \\
& \mathcal{L}\left\{y^{\prime}+4 y\right\}=\mathcal{L}\{16 t\} \\
& \mathcal{L}\left\{y^{\prime}\right\}+4 \mathcal{L}\{y\}=16 \mathcal{L}\{t\}
\end{aligned}
$$

Use $\mathscr{L}\{y\}=Y(s)$ and $\mathscr{L}\left\{y^{\prime}\right\}=s Y(s)-y(0)$

$$
s \Psi(s)-y(0)+4 \Psi(s)=16\left(\frac{11}{s^{2}}\right)=\frac{16}{s^{2}}
$$

Now, isolate $\Psi(s)$. Use the given $y(0)=1$

$$
\begin{aligned}
s Y(s)-1+\psi Y(s) & =\frac{16}{s^{2}} \\
(s+4) Y(s) & =\frac{16}{s^{2}}+1 \\
(s+4) Y(s) & =\frac{16+s^{2}}{s^{2}}
\end{aligned}
$$

$$
\Rightarrow \quad \varphi(s)=\frac{16+s^{2}}{s^{2}(s+4)}
$$

The solution $y(t)$ to the IVP is $\mathscr{L}^{-1}\{Y(s)\}$.
Do a partial fraction decump.
$s^{2}(s+4) \frac{16+s^{2}}{s^{2}(s+4)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+4} \quad$ clear fractions

$$
\begin{aligned}
& 16+s^{2}=A s(s+4)+B(s+4)+C s^{2} \\
&=A\left(s^{2}+4 s\right)+B(s+4)+C s^{2} \\
& 1 s^{2}+0 s+16=(A+C) s^{2}+(4 A+B) s+4 B \\
& A+C=1 \quad 4 A+B=0 \quad 4 B=16 \\
& C=1-A=2 \quad A=\frac{-1}{4} B=-1 \quad B=4 \\
& Y(s)=\frac{-1}{s}+\frac{4}{s^{2}}+\frac{2}{s+4}
\end{aligned}
$$

The solution to the IVP

$$
\begin{aligned}
y(t) & =\mathcal{L}^{-1}\left\{\frac{-1}{s}+\frac{4}{s^{2}}+\frac{2}{s+4}\right\} \\
& =-\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}+4 \mathscr{L}\left\{\frac{1}{s^{2}}\right\}+2 \mathcal{L}\left\{\frac{1}{s+4}\right\} \\
y(t) & =-1+4 t+2 e^{-4 t}
\end{aligned}
$$

