November 8 Math 2306 sec. 51 Fall 2021

Section 16: Laplace Transforms of Derivatives and IVPs

We can solve a system of ODEs using Laplace transforms. Here, we'll consider systems that are

- linear,
- having initial conditions at $t=0$, and
- constant coefficient.

Let's see it in action (i.e. with a couple of examples).

Example
Solve the system of equations

$$
\begin{array}{ll}
\frac{d x}{d t}=-2 x-2 y+60, & x(0)=0 \\
\frac{d y}{d t}=-2 x-5 y+60, & y(0)=0
\end{array}
$$

Let $X(s)=\mathscr{L}\{x(t)\}$ and $Y(s)=\mathcal{L}\{y(t)\}$.
Take transform of both ODC

$$
\begin{aligned}
& \mathcal{L}\left\{x^{\prime}\right\}=\mathcal{L}\{-2 x-2 y+60\} \\
& \mathcal{L}\left\{y^{\prime}\right\}=\mathcal{L}\{-2 x-5 y+60\} \\
& s X(s)-x(0)=-2 X(s)-2 Y(s)+\frac{60}{5} \\
& S Y(s)-y(0)=-2 X(s)-5 Y(s)+\frac{60}{5}
\end{aligned}
$$

November 1, $2021 \quad 2 / 17$

Example Continued... ${ }^{1}$
pul all X, Y terms to the left

$$
\begin{aligned}
& s X+2 X+2 Y=\frac{60}{5} \\
& s Y+2 X+5 Y=\frac{60}{5}
\end{aligned}
$$

$$
\begin{aligned}
& (s+2) X+2 Y=\frac{60}{s} \\
& 2 X+(s+5) Y=\frac{60}{s}
\end{aligned}
$$

Using Crammer's rule

$$
A=\left[\begin{array}{cc}
s+2 & 2 \\
2 & s+5
\end{array}\right], A_{X}=\left[\begin{array}{cc}
\frac{60}{s} & 2 \\
\frac{60}{s} & s+5
\end{array}\right], A_{Y}=\left[\begin{array}{cc}
s+2 & \frac{60}{s} \\
2 & \frac{60}{s}
\end{array}\right]
$$

${ }^{1}$ Crammer's Rule will be helpful at some point.

$$
\begin{aligned}
& \operatorname{det}(A)=(s+2)(s+5)-4=s^{2}+7 s+10-4=s^{2}+7 s+6 \\
&=(s+6)(s+1) \\
& \operatorname{det}\left(A_{X}\right)=\frac{60}{s}(s+5)-\frac{60}{s} \cdot 2=\frac{60}{s}(s+5-2)=\frac{60}{s}(s+3) \\
& \operatorname{det}\left(A_{Y}\right)=(s+2) \frac{60}{s}-2 \frac{60}{5}=\frac{60}{5}(s+2-2)=\frac{60}{s} s=60 \\
& X(s)=\frac{\frac{60}{5}(s+3)}{(s+6)(s+1)}=\frac{60(s+3)}{s(s+6)(s+1)}
\end{aligned}
$$

and

$$
Y_{(s)}=\frac{60}{(s+6)(s+1)}
$$

Partial fraction de comps one required to take the . in verse transforms.

$$
\begin{aligned}
\frac{60(s+3)}{s(s+6)(s+1)} & =\frac{A}{s}+\frac{B}{s+6}+\frac{C}{s+1} \\
60(s+3) & =A(s+6)(s+1)+B s(s+1)+C s(s+6)
\end{aligned}
$$

set $s=0 \quad 60(3)=A(6)(1) \Rightarrow A=\frac{60(3)}{6}=30$

$$
\begin{array}{ll}
s=-6 & 60(-3)=B(-6)(-5) \Rightarrow B=\frac{60(-3)}{+30}=-6 \\
s=-1 & 60(2)=C(-1)(5) \Rightarrow C=\frac{60(2)}{-5}=-24
\end{array}
$$

so

$$
X(s)=\frac{30}{s}-\frac{6}{s+6}-\frac{24}{s+1} \quad \text { uis } \frac{1}{s}
$$

$$
Y(s)=\frac{12}{s+1}-\frac{12}{s+6}
$$

The solution to the IVP

$$
\begin{aligned}
& x(t)=\mathscr{L}^{-1}\{X(s)\}=30-6 e^{-6 t}-24 e^{-t} \\
& y(t)=\mathscr{L}^{-1}\{Y(s)\}=12 e^{-t}-12 e^{-6 t}
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=30-6 e^{-6 t}-24 e^{-t} \\
& y(t)=12 e^{-t}-12 e^{-6 t}
\end{aligned}
$$

Example
Use the Laplace transform to solve the system of equations

$$
\begin{aligned}
x^{\prime \prime}(t) & =y, & x(0)=1, \quad x^{\prime}(0)=0 \\
y^{\prime}(t) & =x, & y(0)=1
\end{aligned}
$$

Let $X(s)=\mathscr{L}\{x(t)\}$ and $Y(s)=\mathscr{L}\{y(t)\}$

$$
\begin{aligned}
& \mathscr{L}\left\{x^{\prime \prime}\right\}=\mathscr{L}\{y\} \\
& \mathscr{L}\left\{y^{\prime}\right\}=\mathscr{L}\{x\} \\
& s^{2} X-s x^{\prime}(0)-x^{\prime}(0)=Y(s) \\
& s Y(s)-y(0)=X(s)
\end{aligned}
$$

$$
\begin{aligned}
& s^{2} X-s=Y \quad s^{2} X-Y=s \\
& s Y-1=X \quad \Rightarrow \quad-X+s Y=1
\end{aligned}
$$

Again using Crammer's rule

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
s^{2} & -1 \\
-1 & s
\end{array}\right], A_{X}=\left[\begin{array}{cc}
s & -1 \\
1 & s
\end{array}\right], A_{Y}=\left[\begin{array}{cc}
s^{2} & s \\
-1 & 1
\end{array}\right] \\
\operatorname{det}(A) & =s^{3}-1, \operatorname{det}\left(A_{X}\right)=s^{2}+1, \operatorname{det}\left(A_{Y}\right)=s^{2}+s
\end{aligned}
$$

Hence $X(\sigma)=\frac{s^{2}+1}{s^{3}-1}, \Psi(s)=\frac{s^{2}+s}{s^{3}-1}$
Note $s^{3}-1=(s-1)\left(s^{2}+s+1\right), s^{2}+s+1$ is ircedvrible

$$
\begin{aligned}
& X(s)=\frac{s^{2}+1}{(s-1)\left(s^{2}+s+1\right)}=\frac{A}{s-1}+\frac{B s+C}{s^{2}+s+1} . \\
& Y(s)=\frac{s^{2}+s}{(s-1)\left(s^{2}+s+1\right)}=\frac{D}{s-1}+\frac{E s+F}{s^{2}+s+1}
\end{aligned}
$$

after some work

$$
\begin{aligned}
& X=\frac{\frac{2}{3}}{s-1}+\frac{\frac{1}{3}(s-1)}{s^{2}+s+1} \\
& Q=\frac{2 / 3}{s-1}+\frac{\frac{1}{3}(s+2)}{s^{2}+s+1}
\end{aligned}
$$

Completing the square on $s^{2}+s+1$

$$
\begin{gathered}
s^{2}+s+\frac{1}{4}-\frac{1}{4}+1=\left(s+\frac{1}{2}\right)^{2}+\frac{3}{4}=\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2} \\
X=\frac{\frac{2}{3}}{s-1}+\frac{\frac{1}{3}(s-1)}{s^{2}+s+1} \\
Q=\frac{2 / 3}{s-1}+\frac{\frac{1}{3}(s+2)}{s^{2}+s+1}
\end{gathered}
$$

we reed $S+\frac{1}{2}$ every s where that S is

$$
\begin{aligned}
& s-1=s+\frac{1}{2}-\frac{3}{2} \\
& s+2=s+\frac{1}{2}+\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& X=\frac{2 / 3}{s-1}+\frac{1}{3} \frac{s+\frac{1}{2}}{(s+1 / 2)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}-\frac{1}{3} \frac{3}{2} \frac{1}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\
& Y=\frac{2 / 3}{s-1}+\frac{1}{3} \frac{s+\frac{1}{2}}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{1}{3}\left(\frac{3}{2}\right) \cdot \frac{1}{\left(s+\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}
\end{aligned}
$$

well finish next time

Crammer's Rule

Crammer's Rule is a method to solve an algebraic linear system of the form

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned}
$$

Define the following matrices

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad A_{x}=\left[\begin{array}{ll}
e & b \\
f & d
\end{array}\right], \quad \text { and } \quad A_{y}=\left[\begin{array}{ll}
a & e \\
c & f
\end{array}\right] .
$$

If $\operatorname{det}(A) \neq 0$, then the system is uniquely solvable and the solution

$$
x=\frac{\operatorname{det}\left(A_{x}\right)}{\operatorname{det}(A)} \quad \text { and } \quad y=\frac{\operatorname{det}\left(A_{y}\right)}{\operatorname{det}(A)}
$$

Crammer's Rule 3×3 case

$$
\begin{aligned}
& a_{11} x+a_{12} y+a_{13} z=b_{1} \\
& a_{21} x+a_{22} y+a_{23} z=b_{2} \\
& a_{31} x+a_{32} y+a_{33} z=b_{3}
\end{aligned}
$$

Let

$$
\begin{array}{ll}
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right], & A_{x}=\left[\begin{array}{lll}
b_{1} & a_{12} & a_{13} \\
b_{2} & a_{22} & a_{23} \\
b_{3} & a_{32} & a_{33}
\end{array}\right] \\
A_{y}=\left[\begin{array}{lll}
a_{11} & b_{1} & a_{13} \\
a_{21} & b_{2} & a_{23} \\
a_{31} & b_{3} & a_{33}
\end{array}\right], & A_{z}=\left[\begin{array}{lll}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & b_{3}
\end{array}\right]
\end{array}
$$

If $\operatorname{det}(A) \neq 0$, then the solution to the system

$$
x=\frac{\operatorname{det}\left(A_{x}\right)}{\operatorname{det}(A)}, \quad y=\frac{\operatorname{det}\left(A_{y}\right)}{\operatorname{det}(A)}, \quad \text { and } \quad z=\frac{\operatorname{det}\left(A_{z}\right)}{\operatorname{det}(A)}
$$

