November 8 Math 2306 sec. 51 Fall 2024

A Look Ahead: Solving IVPs

If $f(t)$ is defined on $[0, \infty)$, is differentiable, and has Laplace transform $F(s) = \mathcal{L} \{f(t)\}\,$, then

$$
\mathscr{L}\left\{f'(t)\right\}=sF(s)-f(0)
$$

Use this result to solve the initial value problem

$$
y'(t) + 4y(t) = 16t, \quad y(0) = 1
$$

Table \downarrow of the ODE, let $\forall (s) : \not\perp \{y(t)\}$.
 $\downarrow \{y' + 4y\} = \downarrow \{16t\}$

 $(5+4)$ $(6) = \frac{16+5^2}{5^2}$

 $Y(s) = \frac{|b+s^{2}|}{s^{2}(s+4)}$ $\qquad \qquad \frac{16+5^{2}}{s^{2}(s+4)}$ $\qquad \qquad \frac{16}{s^{2}(s+4)}$ $\qquad \qquad \$

To find
$$
y, \text{ with } y \text{ a point of the circle}
$$

de $\cos \theta$.

$$
\frac{16+5^2}{5^2(5+4)} = \frac{A}{5} + \frac{B}{5^2} + \frac{C}{5+4}
$$

 $|b + s^{2} = Ac(s + y) + B(s + y) + Cs^{2}$ $S^{2}+O5+16 = (A+C)S^{2}+(YA*B)s+4B$ $4B=16 \Rightarrow B=4$ $YA+B = 0 \Rightarrow A = \frac{-1}{4}B = -1$ $A+C=1 \Rightarrow C=1-A=2$

The solution is to the IVP IS $y(x) = y^2 + \frac{y^2}{5} + \frac{y}{5} + \frac{2}{5+1}$

$$
= -\frac{1}{2}(\frac{1}{5}) + 4\frac{1}{2}(\frac{1}{5}) + 2\frac{1}{2}(\frac{1}{5}+4)
$$

Section 15: Shift Theorems

Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^2}\right\}$ __2 ___ }. Does it help to know that $\mathscr{L}\left\{t^2\right\}=\frac{2}{s^2}$ *s* 3 ?

Shift (or translation) in *s*.

Theorem: Suppose $\mathscr{L}{f(t)} = F(s)$. Then for any real number *a* $\mathscr{L}\left\{e^{at}f(t)\right\}=F(s-a).$

We can state this in terms of the inverse transform. If *F*(*s*) has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\lbrace F(s-a)\rbrace=e^{at}\mathscr{L}^{-1}\lbrace F(s)\rbrace.
$$

We call this a **translation** (or a **shift**) in *s* theorem.

Example:

Suppose $f(t)$ is a function whose Laplace transform¹

$$
F(s) = \mathscr{L} \left\{ f(t) \right\} = \frac{1}{\sqrt{s^2 + 9}}
$$

Evaluate

$$
\mathscr{L}\left\{e^{-2t}f(t)\right\} = \mathcal{F}\left(s - (-2)\right) = \mathcal{F}\left(s+2\right)
$$

¹It's not in our table, but this is an actual function known as a *Bessel function*.

Examples: Evaluate

(a)
$$
\mathscr{L}{t^6}e^{3t} = \frac{6!}{(s-3)^4}
$$

Figure 3¹, find
$$
\frac{1}{2} \{t^6\} = \frac{6!}{5^7} = F(s)
$$

\nLet $\cos(10) = \frac{1}{2} \cos(10) = \frac{1$

Examples: Evaluate

(b)
$$
\mathscr{L}{e^{-t}\cos(t)} = \frac{S+1}{(s+1)^{2}+1}
$$

$$
F(s) = \oint \{ G_5 f_5 \} = \frac{s}{s^2 + 1} \qquad e^{\frac{t}{s}} \Rightarrow a = -1
$$

 $F(s - (-1)) = F(s+1)$

(c)
$$
\mathscr{L}\left\{e^{-t}\sin(t)\right\} = \frac{1}{(s+1)^2+1}
$$

$$
F(s) = \sqrt[3]{\frac{1}{5}} \cdot \frac{1}{s^2 + 1}
$$

Inverse Laplace Transforms (completing the square)

(a)
$$
\mathscr{L}^{-1}\left\{\frac{s}{s^2+2s+2}\right\}
$$

PFD is relevant since $s^2 + 2s + 2$ is irreducible. We'll complete the square $s^{2}+2s+1-1+2 = (s+1)^{2}+1$ We're looking for x^{\prime} $\left(\frac{s}{(s+1)^{2}+1}\right)$ we need the Ndc $S = S+1-1$

$$
\mathcal{L} \left(\frac{s}{(\mathcal{S}+1)^2+1} \right) = \mathcal{L} \left\{ \frac{s+1-1}{(\mathcal{S}+1)^2+1} \right\}
$$

$$
= \oint_{0}^{1} \left\{ \frac{5+1}{(5+1)^{2}+1} \right\} - \oint_{0}^{1} \left\{ \frac{1}{(5+1)^{2}+1} \right\}
$$

$$
\begin{array}{ccc}\n\begin{array}{ccc}\n\sqrt{3} & 5^2 + 1 \\
\sqrt{2} & 1\n\end{array}\n\end{array}
$$
\n $\begin{array}{ccc}\nS^2 + 1 & S^3 + 1 \\
\sqrt{2} & S^2 + 1\n\end{array}$

$$
=e^{-1t}\chi^{1}[\frac{s}{s^{2}+1}]-e^{-1t}\chi^{1}[\frac{1}{s^{2}+1}]
$$

$$
= e^{-t} \cos t - e^{-t} \sin t
$$