November 8 Math 2306 sec. 51 Spring 2023

Section 14: Convolutions

As an integral, it is clear that the transform or inverse transform of a product is NOT the product of the transforms. That is

$$
\mathscr{L}\{f(t) g(t)\} \neq \mathscr{L}\{f(t)\} \mathscr{L}\{g(t)\}
$$

and similarly

$$
\mathscr{L}^{-1}\{F(s) G(s)\} \neq \mathscr{L}^{-1}\{F(s)\} \mathscr{L}^{-1}\{G(s)\}
$$

There is a special type of product of functions that can be used to evaluate an inverse transform of the form $\mathscr{L}^{-1}\{F(s) G(s)\}$. The special product is called a convolution

Convolution

Definition

Let f and g be piecewise continuous on $[0, \infty)$ and of exponential order c for some $c \geq 0$. The convolution of f and g is denoted by $f * g$ and is defined by

$$
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau
$$

Remark: In a more general setting in which functions of interest are defined on $(-\infty, \infty)$, the convolution is typically defined as

$$
(f * g)(t)=\int_{-\infty}^{\infty} f(\tau) g(t-\tau) d \tau
$$

If the functions $f(t)$ and $g(t)$ are assigned to take the value of zero for $t<0$, this definition reduces to the one given here.

Example

Compute the convolution of $f(t)=e^{-3 t}$ and $g(t)=e^{-5 t}$.
By definition

$$
\begin{aligned}
& (f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau \\
& f(t)=e^{-3 t}, f(\tau)=e^{-3 \tau} \\
& g(t)=e^{-5 t}, g(t-\tau)=e^{-5(t-\tau)}=e^{-5 t} \cdot e^{5 \tau} \\
& (f * g)(t)=\int_{0}^{t} e^{-3 \tau} e^{-5 t} \cdot e^{5 \tau} d \tau
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-5 t} \int_{0}^{t} e^{2 \tau} d \tau \\
& =e^{-5 t}\left[\left.\frac{1}{2} e^{2 \tau}\right|_{0} ^{t}\right. \\
& =e^{-5 t}\left[\frac{1}{2} e^{2 t}-\frac{1}{2} e^{0}\right] \\
(f * g)(t) & =\frac{1}{2} e^{-3 t}-\frac{1}{2} e^{-5 t}
\end{aligned}
$$

for $f(t)=e^{-3 t}, g(t)=e^{-s t}$

Laplace Transforms \& Convolutions

The Laplace transform of a convolution is related to the product of Laplace transforms.

Theorem

Suppose $\mathscr{L}\{f(t)\}=F(s)$ and $\mathscr{L}\{g(t)\}=G(s)$. Then

$$
\mathscr{L}\{f * g\}=F(s) G(s)
$$

Theorem

$$
\begin{aligned}
& \text { Suppose } \mathscr{L}^{-1}\{F(s)\}=f(t) \text { and } \mathscr{L}^{-1}\{G(s)\}=g(t) \text {. Then } \\
& \qquad \mathscr{L}^{-1}\{F(s) G(s)\}=(f * g)(t)
\end{aligned}
$$

Remark: This is the same theorem stated first from the perspective of a Laplace transform and then from the perspective of an inverse Laplace transform.

Example
Use the convolution to evaluate

$$
\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+8 s+15}\right\}=\mathscr{L}^{-1}\left\{\left(\frac{1}{s+3}\right)\left(\frac{1}{s+5}\right)\right\}
$$

Let $F(s)=\frac{1}{s+3}$ and $G(s)=\frac{1}{s+5}$
so $\quad \frac{1}{s^{2}+8 s+15}=F(s) G(s)$
Find $\mathcal{X}^{-1}\{F(s)\}$ and $\mathcal{L}^{-1}\{G(s)\}$

$$
f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s+3}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s-(-3)}\right\}=e^{-3 t}
$$

$$
\begin{aligned}
& g(t)=\mathscr{L}^{-1}\left\{\frac{1}{s+5}\right\}=\mathscr{L}^{-1}\left\{\frac{1}{s-(-5)}\right\}=e^{-s t} \\
& \mathscr{L}^{-1}\left\{\frac{1}{s^{2}+8 s+15}\right\}=(f * g)(t)
\end{aligned}
$$

where $f(t)=e^{-3 t}$ and $g(t)=e^{-s t}$

$$
=\frac{1}{2} e^{-3 t}-\frac{1}{2} e^{-5 t}
$$

Example

$$
\mathcal{L}\{f * g\}=F(s) G(s)
$$

Evaluate $\mathscr{L}\left\{\int_{0}^{t} \tau^{6} e^{-4(t-\tau)} d \tau\right\}$
If $f(\tau)=\tau^{6}$ then $f(t)=t^{6}$

$$
\begin{aligned}
& \text { If } f(\tau)=\tau^{6} \text { then }, g(t)=e^{-4 t} \\
& \text { If } g(t-\tau)=e^{-4(t-\tau)},
\end{aligned}
$$

$$
\mathcal{L}\left\{t^{6}\right\}=\frac{6!}{s^{7}}, \quad \mathscr{L}\left[e^{-4 t}\right]=\frac{1}{s-(-4)}=\frac{1}{s+4}
$$

$$
\mathcal{L}\left\{\int_{0}^{t} \tau^{6} e^{-4(t-\tau)} d \tau\right\}=\frac{6!}{s^{7}} \cdot\left(\frac{1}{s+4}\right)=\frac{6!}{s^{7}(s+4)}
$$

Example

Evaluate the inverse Laplace transform in two ways, using a partial fraction decomposition and using a convolution.
$\mathscr{L}^{-1}\left\{\frac{1}{s^{2}(s+1)}\right\}$

To save time, here is a decomposition of the argument.

$$
\frac{1}{s^{2}(s+1)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s+1} .
$$

After some algebra, we find that $A=-1, B=1$ and $C=1$.

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{s^{2}(s+1)}\right\}=\mathcal{L}^{-1}\left\{\frac{-1}{s}+\frac{1}{s^{2}}+\frac{1}{s+1}\right\} \\
&=-1+t+e^{-t} \\
& \frac{1}{s^{2}(s+1)}=F(s) G(s) \quad \text { if } \quad F(s)=\frac{1}{s^{2}}, G(s)=\frac{1}{s+1} \\
& \mathscr{L}^{-1}[F(s) G(s))=(f * s)(t)
\end{aligned}
$$

where $f(t)=\mathcal{L}^{-1}[F(s)]=t \quad$ and

$$
g(t)=\mathscr{L}^{-1}\{G(s)\}=e^{-t}
$$

$$
\begin{aligned}
(f * g)(t) & =\int_{0}^{t} f(\tau) g(t-\tau) d \tau \\
& =\int_{0}^{t} \tau e^{-(t-\tau)} d \tau \\
& =\int_{0}^{t} \tau e^{-t} \cdot e^{\tau} d \tau \\
& =e^{-t} \int_{0}^{t} \tau e^{\tau} d \tau \quad u=\tau \quad d u=d \tau \\
& =e^{-t}\left[\left.\tau e^{\tau}\right|_{0} ^{t}-\int_{0}^{t} e^{\tau} d \tau\right] \\
& =e^{-t}\left[\tau e^{\tau}-\left.e^{\tau}\right|_{0} ^{t}\right. \\
& =e^{-t}\left[t e^{t}-e^{t}-\left(0 e^{0}-e^{0}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-t}\left(t e^{t}-e^{t}+1\right) \\
& =t e^{-t} e^{t}-e^{-t} e^{t}+e^{-t} \\
& =t-1+e^{-t}
\end{aligned}
$$

