October 10 Math 2306 sec. 52 Fall 2022

Section 10: Variation of Parameters

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

If $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for the associated homogeneous equation, then the general solution is

$$
y=y_{c}+y_{p}
$$

where

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x), \quad \text { and } \quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \text {. }
$$

Letting W denote the Wronskian of y_{1} and y_{2}, the functions u_{1} and u_{2} are given by the formulas

$$
u_{1}=\int \frac{-y_{2} g}{W} d x, \quad \text { and } \quad u_{2}=\int \frac{y_{1} g}{W} d x .
$$

Find the general solution

$$
y=y_{c}+y_{p}^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}}+x
$$

Find y_{c} : $\quad{ }^{c}$ solves $y^{\prime \prime}-2 y^{\prime}+y=0$
Characteristic egg $m^{2}-2 m+1=0$

$$
\begin{aligned}
& (m-1)^{2}=0 \Rightarrow m=1 \text { double root } \\
& y_{1}=e^{x}, y_{2}=x e^{x} \\
& y_{c}=c_{1} e^{x}+c_{2} x e^{x}
\end{aligned}
$$

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}}+x
$$

To find y_{p}, let $y_{p}=y_{p_{1}}+y_{p_{2}}$ where $y_{p \text {. solves }} y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}}$ and
$y_{p_{2}}$ solves $y^{\prime \prime}-2 y^{\prime}+y=x$
For $y_{p_{1}}$ use variation of parameters

$$
\begin{gathered}
y_{1}=e^{x}, y_{2}=x e^{x}, g(x)=\frac{e^{x}}{1+x^{2}} \\
w=\left|\begin{array}{ll}
e^{x} & x e^{x} \\
e^{x} & x e^{x}+e^{x}
\end{array}\right|=e^{x}\left(x e^{x}+e^{x}\right)-e^{x}\left(x e^{x}\right)
\end{gathered}
$$

$$
\begin{aligned}
&=x e^{2 x}+e^{2 x}-x e^{2 x}=e^{2 x} \\
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
& u_{1}=\int \frac{-g y_{2}}{w} d x=-\int \frac{\frac{e^{x}}{1+x^{2}}\left(x e^{x}\right)}{e^{2 x}} d x \\
&=-\int \frac{x e^{2 x}}{1+x^{2}} \\
& e^{2 x} \\
&=-\frac{-1}{2} \int \frac{d v}{v}=\frac{-1}{2} \ln |v|=\frac{-1}{2} \ln \left(1+x^{2}\right) \quad \begin{array}{l}
\quad x \quad v=1+x^{2} \\
1+x^{2}
\end{array} d v=2 x d x \\
& \frac{1}{2} d v=x d x \\
& u_{2}=\int \frac{g y_{1}}{w} d x=\int \frac{\frac{e^{x}}{1+x^{2}} e^{x}}{e^{2 x}} d x=\int \frac{1}{1+x^{2}} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\tan ^{-1} x \\
& u_{1}=-\frac{1}{2} \ln \left(1+x^{2}\right), u_{2}=\tan ^{-1} x, \quad y_{1}=e^{x}, y_{2}=x e^{x} \\
& y_{p_{1}}=u_{1} y_{1}+u_{2} y_{2} \\
& y_{p_{1}}=\frac{-1}{2} e^{x} \ln \left(1+x^{2}\right)+x e^{x} \tan ^{-1} x
\end{aligned}
$$

Find yer :
$y_{p_{2}}$ soles $y^{\prime \prime}-2 y^{\prime}+y=x$
use method of undetermined coefficients. $g_{2}(x)=x . \quad 1^{\text {st }}$ degree polynomial

$$
\begin{array}{lr}
y_{p_{2}}=A x+B & \\
y_{p_{2}}^{\prime}=A & y_{p_{2}}^{\prime \prime}-2 y_{p_{2}}^{\prime}+y_{p_{2}}=x \\
y_{p_{2}}{ }^{\prime \prime}=0 & 0-2 A+(A x+B)=x \\
& A x+(-2 A+B)=x+0
\end{array}
$$

Match like terns $\quad A=1$

$$
\begin{array}{ll}
& -2 A+B=0 \Rightarrow B=2 A=2 \\
y_{\rho_{2}}=x+2 & y_{c}=c_{1} e^{x}+c_{2} x e^{x}
\end{array}
$$

$$
\begin{aligned}
& y_{p_{1}}=-\frac{1}{2} e^{x} \ln \left(1+x^{2}\right)+x e^{x} \tan ^{-1} x \\
& y_{p}=y_{p_{1}}+y_{p_{2}} \quad \text { ard } \quad y=y_{c}+y_{p}
\end{aligned}
$$

The general solution

$$
y=c_{1} e^{x}+c_{2} x e^{x}-\frac{1}{2} e^{x} \ln \left(1+x^{2}\right)+x e^{x} \tan ^{-1} x+x+2
$$

Section 11: Linear Mechanical Equations

Simple Harmonic Motion

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in free, undamped motion-a.k.a. simple harmonic motion.

Building an Equation: Hooke's Law

At equilibrium, displacement $x(t)=0$.
Hooke's Law: $\mathrm{F}_{\text {spring }}=k \mathrm{x}$
Figure: In the absence of any displacement, the system is at equilibrium. Displacement $x(t)$ is measured from equilibrium $x=0$.

Building an Equation: Hooke's Law
Newton's Second Law: $F=$ ma (mass times acceleration)

$$
a=\frac{d^{2} x}{d t^{2}} \quad \Longrightarrow \quad F=m \frac{d^{2} x}{d t^{2}}
$$

Hooke's Law: $F=k x$ (proportional to displacement)
Equate forcer $m x^{\prime \prime}=-k x \Rightarrow m x^{\prime \prime}+k x=0$
This is a $z^{\text {nd }}$ arden, linear, constant coefficient, homogeneous $O D E$.
standard form: $\quad x^{\prime \prime}+\frac{k}{m} x=0, w^{2}=\frac{k}{m}$

$$
x^{\prime \prime}+\omega^{2} x=0
$$

Displacment in Equilibrium

Figure: Spring only, versus spring-mass equilibrium, and spring-mass (nonzero) displacement

Obtaining the Spring Constant (US Customary Units)

If an object with weight W pounds stretches a spring δx feet in equilibrium, then by Hooke's law we compute the spring constant via the equation

$$
W=k \delta x
$$

The units for k in this system of measure are lb/ft.

$$
k=\frac{w}{\delta x} \quad \frac{1 b}{f t}
$$

Obtaining the Spring Constant (US Customary Units)

Note also that Weight $=$ mass \times acceleration due to gravity. Hence if we know the weight of an object, we can obtain the mass via

$$
W=m g .
$$

We typically take the approximation $g=32 \mathrm{ft} / \mathrm{sec}^{2}$. The units for mass are lb sec${ }^{2} / \mathrm{ft}$ which are called slugs.

$$
m=\frac{w}{g} \quad \text { sluas }
$$

Obtaining the Spring Constant (SI Units)

In SI units,

- Weight (force) would be in Newtons (N),
- Length would be in meters (m),
- Spring constant would be in N / m
- Mass would be in kilograms (kg)

It is customary to describe an object by its mass in kilograms. When we encounter such a description, we deduce the weight in Newtons

$$
W=m g \text { taking the approximation } g=9.8 \mathrm{~m} / \mathrm{sec}^{2} .
$$

The Circular Frequency ω

Applying Hooke's law with the weight as force, we have

$$
\frac{m g}{m \delta x}=\frac{k \delta x .}{m \delta x} \Rightarrow \frac{k}{m}=\frac{g}{\delta x}
$$

We observe that the value ω can be deduced from δx by

$$
\omega^{2}=\frac{k}{m}=\frac{g}{\delta x} .
$$

Provided that values for δx and g are used in appropriate units, ω is in units of per second.

Simple Harmonic Motion

$$
\begin{equation*}
x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=x_{1} \tag{1}
\end{equation*}
$$

Here, x_{0} and x_{1} are the initial position (relative to equilibrium) and velocity, respectively. The solution is

$$
\begin{equation*}
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t) \tag{2}
\end{equation*}
$$

called the equation of motion.
Caution: The phrase equation of motion is used differently by different authors.

Some use this phrase to refer the IVP (1). Others use it to refer to the solution to the IVP such as (2).
well take up $x>0$ and down $x<0$

Simple Harmonic Motion

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

Characteristics of the system include

- the period $T=\frac{2 \pi}{\omega}$,
- the frequency $f=\frac{1}{T}=\frac{\omega}{2 \pi}^{1}$
- the circular (or angular) frequency ω, and
- the amplitude or maximum displacement $A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}$
${ }^{1}$ Various authors call f the natural frequency and others use this term for ω. $\overline{\bar{z}}$

Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \sin (\omega t+\phi)
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and the phase shift ϕ must be defined by

$$
\sin \phi=\frac{x_{0}}{A}, \quad \text { with } \quad \cos \phi=\frac{x_{1}}{\omega A} .
$$

Amplitude and Phase Shift (alternative definition)

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \cos (\omega t-\hat{\phi})
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and this phase shift $\hat{\phi}$ must be defined by

$$
\cos \hat{\phi}=\frac{x_{0}}{A}, \quad \text { with } \quad \sin \hat{\phi}=\frac{x_{1}}{\omega A} .
$$

