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Chapter 4 Vector Spaces & Subspaces

In this chapter, we will

▶ learn about additional properties of vectors in Rn,

▶ learn about special subsets of Rn, including some related to matrices,

▶ state the Fundamental Theorem of Linear Algebra,

▶ and pin down precisely what a vector space is.
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4.1 Linear Independence

Definition: Linear Independence

The collection of vectors v⃗1, v⃗2, . . . , v⃗n in Rm is said to be linearly inde-
pendent if the homogeneous equation

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗m (1)

has only the trivial solution, x1 = x2 = · · · = xn = 0.

If the collection of vectors is not linearly independent, then we say that
it is linearly dependent.

For a linearly dependent set of vectors, an equation of the form (1)
having at least one nonzero weight is called a linear dependence re-
lation.
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Some Observations on Linear (In)dependence
▶ Every nonempty set {v⃗1, v⃗2, . . . , v⃗n} in Rm is either linearly

independent or linearly dependent.

▶ Linear independence/dependence is a property of a set (or
collection) of vectors.

”The column vectors of A are linearly dependent.” (makes sense)

”The matrix A is linearly dependent.” (doesn’t make sense)

▶ We saw last time that a set containing one vector, {v⃗}, in Rm is
linearly {

independent if v⃗ ̸= 0⃗m

dependent if v⃗ = 0⃗m

So {⟨1,0,2,1⟩} is linearly independent, while {⟨0,0,0⟩} is linearly
dependent.
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The set {e⃗1, e⃗2} in R2 is linearly independent.
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Show that the set {⟨1,0,1⟩, ⟨−3,0,−3⟩} is linearly
dependent.
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A Set of Two Vectors
A set of two vectors, {v⃗1, v⃗2}, in Rn is linearly dependent if and only if
one of the vectors is a scalar multiple of the other.
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Example
Identify each set as being linearly dependent or linearly independent.

1. {⟨1,2,1⟩}

2. {⟨4,2,−1,0⟩, ⟨−8,−4,2,0⟩}

3. {⟨1,1⟩, ⟨0,0⟩}

4. {⟨1,3,0,4⟩, ⟨2,0,6,8⟩}
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Three or More Vectors

With a set of three or more vectors, we can always turn an equa-
tion like

x1v⃗1 + x2v⃗2 + · · ·+ xnv⃗n = 0⃗m

into a matrix-vector equation

Ax⃗ = 0⃗m

by setting
Coli(A) = v⃗i , i = 1, . . . ,n.

Example: Determine whether the set {v⃗1, v⃗2, v⃗3} is linearly dependent
or linearly independent where

v⃗1 = ⟨−2,4,−5⟩, v⃗2 = ⟨−5,8,−6⟩, v⃗3 = ⟨3,0,−12⟩.
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v⃗1 = ⟨−2,4,−5⟩, v⃗2 = ⟨−5,8,−6⟩, v⃗3 = ⟨3,0,−12⟩
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Matrix Columns

Theorem: Let A be an m × n matrix. The column vectors of A
are linearly independent in Rm if and only if the homogeneous
equation Ax⃗ = 0⃗m has only the trivial solution.

Corollary: Square Matrices & Invertibility

If A is an n×n matrix, then A is invertible if and only if the column
vectors of A are linearly independent.

Remark: Since the invertibility of A implies invertibility of AT , we can
also say that A is invertible if and only if the row vectors of A are
linearly independent.
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Some Linearly Dependent Sets

Theorem: Let {v⃗1, v⃗2, . . . , v⃗k} be a collection of k of vectors in
Rn. If

a. one of the vectors, say v⃗i = 0⃗n, or if
b. k > n,

then the collection is linearly dependent.

Remark: Note what this says. It says
▶ Any set that includes a zero vector is automatically linearly

dependent.
▶ If a set contains more vectors than there are entries in each

vector, it’s automatically linearly dependent.
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Example

Explain why each set below is linearly dependent.
1. {⟨0,0⟩, ⟨1,2⟩}

2. {⟨1,−3⟩, ⟨5,7⟩, ⟨4,−1⟩}
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Subsets of Rn

A subset of Rn is just some collection of vectors in Rn. We can come up with
tons of examples of subsets:

▶ B = {e⃗1, e⃗2} in R2 is a subset containing the two vectors ⟨1,0⟩ and
⟨0,1⟩.

▶ The set W = {⟨a,b,0⟩ |a,b ∈ R} is the subset of R3 of all vectors whose
last entry is zero.

▶ The set T = {⟨k ,n⟩ | k ,n ∈ Z} is the subset of R2 of all vectors having
integer entries.

▶ The set P = Span{⟨1,0,1,0⟩} is the subset of R4 of all scalar multiples
of ⟨1,0,1,0⟩.
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4.2 Subspaces of Rn

Not all subsets are created equal. Recall that we have two critical operations
in Rn:

▶ vector addition and

▶ scalar multiplication.

Subsets of Rn that hold a special sort of importance in Linear Algebra are
sets that in some sense preserve these two operations. Such sets are similar
to Rn in that we can do arithmetic with these operations in the set.
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Definition: Subspace of Rn

A subset, S, of Rn is a subspace of Rn provided
i. S is nonempty,
ii. for any pair of vectors u⃗ and v⃗ in S, u⃗ + v⃗ is in S, and
iii. for any vector u⃗ in S and scalar c in R, cu⃗ is in S.

A set that satisfies property
ii. is said to be closed with respect to vector addition.
iii. is said to be closed with respect to scalar multiplication.

The phrase “with respect to” can be repaced with the word “under”.
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Example: V = {⟨a,b⟩ | a,b ∈ R and ab ≥ 0} .

Which of the following vectors is in V?

1. ⟨2,3⟩

2. ⟨4,−2⟩

3. ⟨−5,−2⟩

4. ⟨0,0⟩

5. ⟨−12,0⟩

6. ⟨−6,8⟩

In the standard, Cartesian coordinate system, a vector in V would have to
have standard representation in which quadrant(s)? (I, II, III, or IV)
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V = {⟨a,b⟩ | a,b ∈ R and ab ≥ 0} .

Suppose ⟨a,b⟩ is in V . Is the scalar multiple c⟨a,b⟩ in V is

1. c > 0?

2. c < 0?

3. c = 0?
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V = {⟨a,b⟩ | a,b ∈ R and ab ≥ 0} .

The following vectors are all in V :

x⃗1 = ⟨2,3⟩, x⃗3 = ⟨0,0⟩, x⃗5 = ⟨−5,−2⟩,
x⃗2 = ⟨1,1⟩, x⃗4 = ⟨−1,−1⟩, x⃗6 = ⟨−6,0⟩,

Which of the following sums are in V?

x⃗1 + x⃗2 x⃗3 + x⃗4

x⃗5 + x⃗6 x⃗1 + x⃗5

x⃗2 + x⃗4 x⃗2 + x⃗6
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V = {⟨a,b⟩ | a,b ∈ R and ab ≥ 0} .
1. Is V a nonempty subset of R2?

2. Is V closed under scalar multiplication?

3. Is V closed under vector addition?

4. Is V a subspace of R2?
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Example
Determine whether the following set is a subspace of R3.

W = {⟨a,b,0⟩ | a,b ∈ R} .
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Observation

Note that for any vector x⃗ = ⟨a,b,0⟩ in W ,

x⃗ = ⟨a,b,0⟩ = a⟨1,0,0⟩+ b⟨0,1,0⟩.

So
x⃗ ∈ Span {⟨1,0,0⟩, ⟨0,1,0⟩} .

Based on how span is defined, a set that is defined as a span is
closed under both vector addition and scalar multiplication.

October 8, 2025 27 / 90



Theorem

If S = {v⃗1, v⃗2, . . . , v⃗k} is any nonempty subset of vectors in Rn,
then the set Span(S) is a subspace of Rn.

Remark: Another way to prove that some set is a subspace of Rn is to
show that it’s a span.
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Example
Show that the set G defined below is a subspace of R4 by finding a
spanning set.

G = {⟨a + b,a,−b,0⟩ | a,b ∈ R}
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4.2.1 Fundamental Subspaces of a Matrix
We will define four subspaces, two of Rm and two of Rn, associated with an
m × n matrix. Collectively, we call these the Fundamental Subspaces of a
Matrix.

Column Space

Let A be an m × n matrix. The subspace of Rm spanned by the
column vectors of A, denoted

CS(A) = Span{Col1(A), . . . ,Coln(A)},

is called the column space of A.

Remark: We can say

“CS(A) is the set of all vectors y⃗ ∈ Rm such that Ax⃗ = y⃗ is consistent.”
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Row Space

Let A be an m × n matrix. The subspace of Rn spanned by the
row vectors of A, denoted

RS(A) = Span{Row1(A), . . . ,Rowm(A)},

is called the row space of A.

Remark: There is a geometric interpretation of RS(A), but it will make
more sense after we define another fundamental subspace.
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Example

Let A =


0 3 1
4 7 5

−2 −5 −3
5 −4 2

. Identify a spanning set for RS(A) and a

spanning set for CS(A).
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A =


0 3 1
4 7 5

−2 −5 −3
5 −4 2


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Example

Characterize the column and row spaces of the matrix A =

[
1 1
0 0

]
.
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CS(A) & RS(A) of A =

[
1 1
0 0

]

Figure: The row and column spaces of this matrix A are the lines x2 = x1 and
x2 = 0, respectively.
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A Third Fundamental Subspace

Definition: Null Space

The null space of A, denoted N (A), is the set of all solutions of
the homogeneous equation Ax⃗ = 0⃗m. That is,

N (A) = {x⃗ ∈ Rn |Ax⃗ = 0⃗m}.

Theorem

Let A be an m × n matrix. Then N (A) is a subspace of Rn.
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Proof:
For an m × n matrix A, we have to show that (1) N (A) is not empty, (2)
N (A) is closed under vector addition, and (3) N (A) is closed under
scalar multiplication.
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Example

Find a spanning set for N (A) where A =

[
1 1
0 0

]
.
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Example

Find a spanning set for N (AT ) where A =

[
1 1
0 0

]
.
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Interpreting the Fundamental Subspaces

We already have an interpretation of the column space and the
null space. For m × n matrix A

▶ CS(A) is all y⃗ ∈ Rm such that Ax⃗ = y⃗ is consistent, and

▶ N (A) is all x⃗ ∈ Rn such that Ax⃗ = 0⃗m.

Question:

How can we interpret the row space?

Since the row space and the null space are both subspaces of Rn, we
can ask how they are related. Let’s remember that the product

Ax⃗ = ⟨Row1(A) · x⃗ ,Row2(A) · x⃗ , . . . ,Rowm(A) · x⃗⟩
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Question from Exam 1

Let u⃗ and v⃗ be two vectors in Rn. Suppose x⃗ is a vector in Rn

such that x⃗ is orthogonal to u⃗ and x⃗ is orthogonal to v⃗ . Show that
x⃗ is orthogonal to every vector in Span{u⃗, v⃗}.

This result generalizes. That is, if

x⃗ · v⃗1 = 0, and x⃗ · v⃗2 = 0, and x⃗ · v⃗3 = 0, · · · , and x⃗ · v⃗m = 0

then
x⃗ · z⃗ = 0

for every vector z⃗ in Span{v⃗1, . . . , v⃗m}.
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The Row Space
Suppose x⃗ ∈ N (A) for some m × n matrix A. Then Ax⃗ = 0⃗m which
means that

Row1(A) · x⃗ = 0
Row2(A) · x⃗ = 0

...
...

...
Rowm(A) · x⃗ = 0

That is, a vector x⃗ ∈ N (A) is orthogonal to every row vector of A.
Since that means that x⃗ is orthogonal to every linear combination of
the row vectors of A, we can say

Every vector in RS(A) is orthogonal to every vector in N (A) and
vice versa.
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Orthogonal Complements

Let W be a subspace of Rn. The orthogonal complement of
W , denoted W⊥, is the set of all x⃗ in Rn that are orthogonal to all
vectors in W . We can write

W⊥ =
{

x⃗ ∈ Rn | x⃗ · w⃗ = 0, for all w⃗ ∈ W
}
.

The symbol W⊥ is read “W perp.”

RS(A) & N (A)

For m×n matrix A, the row space of A is the orthogonal comple-
ment of the null space of A.

RS(A) = N (A)⊥ and N (A) = RS(A)⊥.
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RS(A) & N (A) of A =

[
1 1
0 0

]

Figure: The row and null spaces of this matrix A are the lines x2 = x1 and
x2 = −x1, respectively. In this case, they are actually perpendicular lines.
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Orthogonal Complements in R3

Figure: A subspace of R3 that corresponds to a plane together with its orthogonal complement
corresponding to a line.
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The Fourth Fundamental Subspace
The fourth fundamental subspace of a matrix A is the null space of AT , i.e.,
N (AT ). Recall that for a matrix A,

Coli(A) = Rowi(AT ) and Rowi(A) = Coli(AT ).

So this fourth subspace is the orthogonal complement of CS(A).

N (AT )

For m × n matrix A

N (AT ) =
{

x⃗ ∈ Rm | AT x⃗ = 0⃗n

}
.

Equivalently

N (AT ) = {x⃗ ∈ Rm | x⃗ · y⃗ = 0, for every y⃗ ∈ CS(A)} .
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CS(A) & N (AT ) of A =

[
1 1
0 0

]

Figure: The column space of A and null space of AT are the lines x2 = 0 and
x1 = 0, respectively. These are also perpendicular line.
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Example
Find a spanning set for each of the four fundamental subspaces of the
matrix

A =

[
1 −2 5 4
2 −4 1 −1

]
.
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4.3 Bases
Consider the two subspaces of R2:

S1 = Span{⟨1,0⟩} and S2 = Span{⟨1,0⟩, ⟨2,0⟩}.

How are these related?
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Bases

Span{⟨1,0⟩} = Span{⟨1,0⟩, ⟨2,0⟩}

Note that {⟨1,0⟩} is a linearly independent set and {⟨1,0⟩, ⟨2,0⟩} is a
linearly dependent set. We might argue that {⟨1,0⟩} is a more efficient
spanning set.

Definition of a Basis

Let S be a subspace of Rn, and let B = {u⃗1, . . . , u⃗k} be a subset
of vectors in S. B is a basis of S provided
▶ B spans S, and
▶ B is linearly independent.

A basis is a linearly independent spanning set. We can think of a
basis as a minimal spanning set.
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Standard a.k.a. Elementary Basis of Rn

The set E = {e⃗1, e⃗2, . . . , e⃗n} of standard unit vectors in Rn is called the
standard basis or the elementary basis of Rn.

For example,

R2 = Span{e⃗1, e⃗2},

R3 = Span{e⃗1, e⃗2, e⃗3},

and so forth.

Elementary bases are easy to work with, but they’re not the only bases
we can work with.
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Example

Show that {⟨1,1⟩, ⟨1,−1⟩} is a basis for R2.
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Example
Determine whether the set {⟨1,0,0⟩, ⟨1,1,0⟩, ⟨1,1,1⟩, ⟨0,1,0⟩} is a
basis for R3.
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Basis for a Null Space

Find a basis for N (A) for A =

 −2 −5 3
4 8 0

−5 −6 −12

.
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Why are Bases Special?
Coordinate Vectors

Theorem

Let B = {u⃗1, u⃗2, . . . , u⃗k} be an ordered basis of a subspace S of Rn.
If x⃗ is any element of S, then there is exactly one representation (i.e.,
one set of coefficients) of x⃗ as a linear combination of elements of B.

Note: Saying the basis is ordered just means that we put them in a particular order
and number them accordingly.
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Definition: Coordinate Vectors

Let S be a subspace of Rn and B = {u⃗1, . . . , u⃗k} be an ordered basis
of S. For each element x⃗ in S, the coordinate vector for x⃗ relative to
the basis B is denoted [x⃗ ]B and is defined to be

[x⃗ ]B = ⟨c1, c2, . . . , ck ⟩,

where the entries are the coefficients of the representation of x⃗ as a
linear combination of the basis elements. That is, the c’s are the coef-
ficients in the equation

x⃗ = c1u⃗1 + c2u⃗2 + · · ·+ ck u⃗k .
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Example
Consider the basis B = {⟨2,1⟩, ⟨−1,1⟩}, in the order given, of R2.
Determine

1. [x⃗ ]B for x⃗ = ⟨2,1⟩
2. [x⃗ ]B for x⃗ = ⟨−1,1⟩
3. [x⃗ ]B for x⃗ = ⟨1,0⟩
4. x⃗ if [x⃗ ]B = ⟨−1,−1⟩
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B = {⟨2,1⟩, ⟨−1,1⟩}
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B = {⟨2,1⟩, ⟨−1,1⟩}
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Figure: The coordinate vector [⟨1,0⟩]B =
〈 1

3 ,−
1
3

〉
because the vector we

usually associate with e⃗1 is 1
3 b⃗1 − 1

3 b⃗2 in the new basis B = {⟨2,1⟩, ⟨−1,1⟩}.
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Figure: The coordinate vector [x⃗ ]B = ⟨−1,−1⟩ is obtained by adding −1b⃗1

and −1b⃗2. In the standard coordinate system, this would correspond to the
vector x⃗ = ⟨−1,−2⟩.
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Change of Basis Matrix
Consider our example B = {⟨2,1⟩, ⟨−1,1⟩} for R2. We can create a
matrix B having the basis elements as its columns,

B =

[
2 −1
1 1

]
.

If [x⃗ ]B = ⟨c1, c2⟩ for vector x⃗ , then

x⃗ = c1⟨2,1⟩+ c2⟨−1,1⟩︸ ︷︷ ︸
lin. combo of columns

= B[x⃗ ]B

B is called a change of basis matrix.

If B happens to be square, we can also get

[x⃗ ]B = B−1x⃗ .

(This is only relevant when the matrix is square.)
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Example
Let C = {⟨1,1,0⟩, ⟨0,1,0⟩} be an ordered basis for S = Span(C).
Create a matrix C having the basis elements as its columns. Use the
fact that x⃗ = C[x⃗ ]C to evaluate

1. x⃗ if [x⃗ ]C = ⟨4,2⟩
2. [u⃗]C if u⃗ = ⟨2,−3,0⟩
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Isomorphic

We might notice that the subspace S = Span{⟨1,1,0⟩, ⟨0,1,0⟩} in the
last example is a subspace of R3. But we can equate each element
uniquely with an element of R2, namely its coordinate vector. Since we
can equate the variable change to matrix multiplication the two
operations, vector addition and scalar multiplication, are preserved
when working with coordinate vectors. In fact, for every u⃗ and v⃗ in S
and scalars c and d , it is true that

[cu⃗ + dv⃗ ]C = c[u⃗]C + d [v⃗ ]C .

There is a name for this property.

We say that S is isomorphic to R2.
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4.3.2 Dimension

Theorem:

Suppose S is a subspace of Rn and B = {u⃗1, u⃗2, . . . , u⃗k} is
a basis for S that contains k vectors with k ≥ 1. If T =
{v⃗1, v⃗2, . . . , v⃗m} is any set of m vectors in S with m > k , then
T is linearly dependent.

Remark: This generalizes the result we had before that a set
containing more vectors than elements in each vector must be linearly
dependent. It says that a set of vectors having more vectors than
elements in a basis for the subspace must be linearly dependent.
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Example

1. If S has a basis B = {u⃗1, u⃗2, u⃗3} with three vectors in it, then
every set of vectors in S with four or more vectors in
automatically linearly dependent.

2. If P has a basis B = {u⃗1, u⃗2, u⃗3, u⃗4, u⃗5} with five vectors in it, then
every set of vectors in P with six or more vectors in
automatically linearly dependent.

Let B = {⟨1,2,0⟩, ⟨0,1,1⟩} and S = Span(B). The subset of S,

{⟨0,3,3⟩, ⟨1,3,1⟩, ⟨2,5,1⟩}.

must be linearly dependent.
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Dimension Defined

Theorem

Let n ≥ 2 and 1 ≤ k ≤ n. Suppose S is a subspace of Rn and
B = {u⃗1, . . . , u⃗k} is a basis of S. Every basis of S consists of
exactly k vectors.

Definition: Dimension

Let S be a subspace of Rn. If S = {0⃗n}, then the dimension of
S, written dim(S) is equal to zero. If S contains more than the
zero vector, then the dimension of S, dim(S) = k , where k is the
number of elements in any basis of S.
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The Dimension of Rn

Note that for n ≥ 2, E = {e⃗1, e⃗2, . . . , e⃗n} is a basis for Rn. Hence

dim(Rn) = n.

Example: What is the dimension of N (A) for

A =

 −2 −5 3 −3
4 8 0 4

−5 −6 −12 −1

?
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4.4 Bases for the Column & Row Spaces of a Matrix

Theorem

Let A be an m × n matrix that is not the zero matrix. Then the
pivot columns of A form a basis for CS(A).

Theorem

If A and B are row equivalent matrices, then RS(A) = RS(B).

Corollary

Let A be an m × n matrix that is not the zero matrix. Then the
nonzero rows of rref(A) form a basis for RS(A).

October 8, 2025 78 / 90



Bases for Fundamental Subspaces

Given m × n matrix A that is not the zero matrix:

▶ Set up
[
A | 0⃗m

]
and row reduce to

[
rref(A) | 0⃗m

]
.

▶ Identify the pivot columns from rref(A) and use those pivot
columns to form a basis for CS(A).

▶ Take the nonzero rows of rref(A) to form a basis for RS(A).

▶ Use rref(A) to deduce the relationship between basic and free
variables, and use the factoring process to obtain a basis for
N (A). If N (A) = {0⃗n}, then N (A) doesn’t have a basis.

▶ If a basis for N (AT ) is desired, use
[
rref(AT ) | 0⃗n

]
and the

factoring process to obtain a basis.
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Find Bases & Dimensions of RS(A), CS(A) and N (A)

A =


2 6 0 −2 −4
1 3 1 −4 −17

−1 −3 −1 4 17
2 6 1 0 1

 .

[
A| 0⃗4

]
=


1 3 0 0 2 0
0 0 1 0 −3 0
0 0 0 1 4 0
0 0 0 0 0 0

 .
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Row Operations & Linear Dependence Relations

▶ Elementary row operations preserve linear dependence
relations between columns but change the column space.

▶ Elementary row operations preserve the row space but
change linear dependence relations between the rows.

Important Observations
▶ The basis elements for the column space come from A not from

rref(A).
▶ The basis elements for the row space come from rref(A) not from

A.
▶ The method we’ve been using all along to characterize solutions

to Ax⃗ = 0⃗m gives us a basis for the null space.
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4.5 The Fundamental Theorem of Linear Algebra

Dimensions of CS(A), RS(A) & N (A)

For m × n matrix A,

dim(CS(A)) = the number of pivot columns of A.

dim(N (A)) = the number of non-pivot columns of A.

dim(RS(A)) = the number of pivot columns of A.
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Rank & Nullity

Definition: Rank

The rank of a matrix A, denoted rank(A), is the dimension of the
column space of A.

We also have a special name for the dimension of the null space of a
matrix. We call this the nullity.

Definition: Nullity

The nullity of a matrix A, denoted nullity(A), is the dimension of
the null space of A.
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The Fundamental Theorem of Linear Algebra

Let A be an m × n matrix. Then

1. rank(A) = dim
(
CS(A)

)
= dim

(
RS(A)

)
.

2. rank(A) + nullity(A) = n.

3. Every vector x⃗ in RS(A) is orthogonal to every vector y⃗ in
N (A), and similarly, every vector u⃗ in CS(A) is orthogonal to
every vector v⃗ in N (AT ).

Part 2. of the FTLA is often called the rank-nullity theorem. It follows
from the observation that

the number of pivot columns of A
+ the number of non-pivot columns of A
= the total number of columns of A.
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Example

Suppose A is a 12 × 20 matrix.

1. If rank(A) = 9, how many free variables are there for Ax⃗ = 0⃗12?

2. If rref(A) has seven nonzero rows, what is nullity(AT )?
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Example

Let B =

 1 3 1 0 2
2 2 −2 4 0
3 1 −5 8 1

. Find the rank and nullity of B.

rank(B) = and nullity(B) = .
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