October 11 Math 2306 sec. 51 Spring 2023

Section 9: Method of Undetermined Coefficients

The context here is linear, constant coefficient, nonhomogeneous equations

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)
$$

where g comes from the restricted classes of functions

- polynomials,
- exponentials,
- sines and/or cosines,
- and products and sums of the above kinds of functions

The general solution, $y=y_{c}+y_{p}$ will require both y_{c} and y_{p}. The associated homogeneous equation will be constant coefficient, so we use the method of the last section to find y_{c}.

Method Basics: $a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{0} y=g(x)$

- Classify g as a certain type, and assume y_{p} is of this same type ${ }^{1}$ with unspecified coefficients, A, B, C, etc.
- Substitute the assumed y_{p} into the ODE and collect like terms
- Match like terms on the left and right to get equations for the coefficients.
- Solve the resulting system to determine the coefficients for y_{p}.

[^0]
Some Rules \& Caveats

Rules of Thumb

- Polynomials include all powers from constant up to the degree.
- Where sines go, cosines follow and vice versa.

Caution

- The method is self correcting, but it's best to get the set up correct.
- If an initial guess for y_{p} shares like term(s) in common with y_{c}, include a factor x^{n}, where n is the smallest positive integer needed to eliminate any common like term.

Find the form of the particular solution

$$
y^{\prime \prime \prime}-y^{\prime \prime}+y^{\prime}-y=\cos x+x^{4}
$$

Find y_{c} : Characteristic eg:

$$
\begin{aligned}
& m^{3}-m^{2}+m-1=0 \\
& m^{2}(m-1)+(m-1)=0 \quad \begin{array}{l}
m-1=0 \Rightarrow m=1 \quad \alpha=0 \\
\left(m^{2}+1\right)(m-1)=0 \Rightarrow m= \pm i \quad \beta=1 \\
m^{2}+1=0 \Rightarrow y_{3} \\
y_{1}=e^{1 x}, y_{2}=e^{0 x} \cos (1 x), y_{3}=e^{0 x} \sin (1 x) \\
y_{1}=e^{x}, y_{2}=\cos x, y_{3}=\sin x
\end{array}
\end{aligned}
$$

To find y_{s} let's look for $y_{p 1}$ and $y_{p_{2}}$ where $y_{p_{1}}$ solves $y_{p_{1}}^{\prime \prime \prime}-y_{p_{1}}^{\prime \prime}+y_{p_{1}}^{\prime}-y_{p_{1}}=\cos x$
and $y_{p_{2}}$ solus $y_{p_{2}}^{\prime \prime \prime}-y_{p_{2}}^{\prime \prime}+y_{p_{2}}^{\prime}-y_{p_{2}}=x^{4}$

For $g_{1}(x)=\cos x \quad y_{p_{1}}=(A \cos x+B \sin x) x$

$$
=A \times \cos x+B \times \sin x
$$

For $g_{2}(x)=x^{4}$

$$
y_{p_{2}}=C x^{4}+D x^{3}+E x^{2}+F x+G
$$

$$
y_{1}=e^{x}, y_{2}=\cos x, y_{3}=\sin x
$$

$$
\begin{aligned}
y_{p}= & y_{p_{1}} \\
& +y_{p_{2}} \\
& y_{p}=A x \cos x+B x \sin x+C x^{4}+D x^{3}+E x^{2}+F x+G
\end{aligned}
$$

Section 10: Variation of Parameters

We are still considering nonhomogeneous, linear ODEs. Consider equations of the form

$$
y^{\prime \prime}+y=\tan x, \quad \text { or } \quad x^{2} y^{\prime \prime}+x y^{\prime}-4 y=e^{x} .
$$

Question: Can the method of undetermined coefficients be used to find a particular solution for either of these nonhomogeneous ODEs?
(Why/why not?)

$$
\begin{aligned}
& \text { tanx is not in the allowed riaht side types } \\
& \text { the } 2^{\text {nd }} \text { one is not constant coet. }
\end{aligned}
$$

Variation of Parameters

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x) \tag{1}
\end{equation*}
$$

For the equation (1) in standard form suppose $\left\{y_{1}(x), y_{2}(x)\right\}$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where u_{1} and u_{2} are functions we will determine (in terms of y_{1}, y_{2} and g).

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x) \quad c_{1}, c_{2}
$$

This method is called variation of parameters.

Variation of Parameters: Derivation of y_{p}

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

Set $\quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$
we have twos unknowns u_{1} and u_{2} but only one equation, the $O D E$. well introduce a $z^{\text {nd }}$ equation

$$
\begin{aligned}
& y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
& y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}+u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2} \\
& \text { assume } u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0
\end{aligned}
$$

Remember that $\quad y_{i}^{\prime \prime}+P(x) y_{i}^{\prime}+Q(x) y_{i}=0, \quad$ for $i=1,2$

$$
\begin{gathered}
y_{p}=u_{1} y_{1}+u_{2} y_{2} \\
y_{p}^{\prime}=u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime} \\
y_{p}^{\prime \prime}=u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime} \\
y_{p}^{\prime \prime}+p(x) y_{p}^{\prime}+Q(x) y_{p}=g \\
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+p(x)\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+Q(x)\left(u_{1} y_{1}+u_{2} y_{2}\right)=g(x)
\end{gathered}
$$

Collect $u_{1}^{\prime}, u_{2}^{\prime} u_{1}$ ard u_{2}

$$
\begin{gathered}
u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}+(\underbrace{\left(y_{1}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{1}\right.}_{0^{\prime \prime}}) u_{1}+(\underbrace{\left(y_{2}^{\prime \prime}+P(x) y_{1}^{\prime}+Q(x) y_{2}\right.}_{0^{\prime \prime}}) u_{2}=g(x) \\
\Rightarrow u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{gathered}
$$

So u_{1} and u_{2} solve the system

$$
\begin{aligned}
& u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=0 \\
& u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}=g(x)
\end{aligned}
$$

In matrix format

$$
\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
g
\end{array}\right]
$$

well finish finding formulas for u_{1} and u_{2} on Firdory.

[^0]: ${ }^{1}$ We will see shortly that our final conclusion on the format of y_{p} can depend on y_{c}

