October 11 Math 2306 sec. 52 Fall 2021

Section 11: Linear Mechanical Equations

The displacement x(t) at the time t of an object subjected to a spring
force and damping force satisfied the ODE

mx" + Bx" 4+ kx = 0.

> mis the mass,
> (3 is the damping coefficient, and
> k is the spring constant.

This was derived by summing the forces. Total force F = mx”,

damping force Fdamping = fx’, spring force Fspring = kx
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Free Damped Motion

The equation in standard form is

d2 ax

2A:ﬁ and wzwﬁ.
m m

Three qualitatively different solutions can occur depending on the
nature of the roots of the characteristic equation

where
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. a?x ax
Damping Types a2 + 2/\5 +wx=0

The roots' of the characteristic equation are

r=-X\+v\—w?

The motion is called

» over damped if there are two, distinct real roots (decay only, no
oscillations)

> critically damped if there is one, repeated real root (fasted decay,
no oscillations), and

» under damped if the roots are complex conjugates (decay with
oscillations).

'Observation: Conservation of energy ensures that for all cases with damping, the
real part of the roots of the characteristic equation (—\) MUST be negative:
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Comparison of Damping
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: Comparison of motion for the three damping types.
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Initial Conditions

Given an initial position x(0) = X and initial velocity x'(0) = xy, the
displacement will satisfy an initial value problem

mx" +8x' +kx =0 x(0)=x X(0)=x

A couple of terms: If an object is released

» from equilibrium, it means that x(0) = 0;

» from rest, it means that x’(0) = 0.
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Example

A 2 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
10 times the instantaneous velocity. Write the differential equation

describing this system. Determine if the motion is underdamped,
overdamped or critically damped.

The ooe s mx(‘+?xl+ lkw =D
M=z 2.

%:lo Z X -+ }‘DX *L/ZX:O
w =12

v Chond o2 Qu{m

XSy bx =0
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Example

A 64 Ib object stretches a spring 4 ft in equilibrium. It is attached to a
dashpot with damping constant 5 = 8 Ib-sec/ft. The object is initially
displaced 18 inches above equilibrium and given a downward velocity
of 4 ft/sec. Find its displacement for all t > 0.
e aoc 5 oA+ %X‘* ex = 0O
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Driven Motion

We can consider the application of an external driving force (with or
without damping). Assume a time dependent force f(t) is applied to
the system. The ODE governing displacement becomes

X o

ar? at
Divide out m and let F(t) = f(t)/m to obtain the nonhomogeneous
equation

— kx + f(t), B>0.

d2 ax
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Forced Undamped Motion and Resonance

Consider the case F(t) = Fycos(vt) or F(t) = Fgsin(yt), and A = 0.
Two cases arise

(1) 7#w, and (2) y=w.

Taking the sine case, the DE is
X" + w?x = Fysin(vt)
with complementary solution

Xe = €1 cos(wt) + Cosin(wt).
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X" 4+ w?x = Fysin(yt)
Note that
Xe = ¢ cos(wt) + Cosin(wt).

Using the method of undetermined coefficients, the first guess to the
particular solution is

Xp = Acos(vt)+Bsin(vt) \P X L Yoo~
X() 4 X \Ne—w—t_ o \ e ‘\'erh.f RN )

(oo~ v Ss \/\/\\f Xo S Cacreck'

X € Cos (oM« (o Smlwdy + A coc (¥ 4 B S (W)
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X" 4+ w?x = Fysin(yt)
Note that
Xe = ¢ cos(wt) + Cosin(wt).

Using the method of undetermined coefficients, the first guess to the
particular solution is

Xp = Acos(vt)+Bsin(vt) & Y=uw, W Xos
L\M D derny 1n Cominmna lA' X, . Wwe o e
o MuXply, \’b £
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Forced Undamped Motion and Resonance

For F(t) = Fosin(vt) starting from rest at equilibrium:

Case (1): x" +w?x = Fysin(yt), x(0)=0, x'(0)=0

x(t) = 2F° , (sin(*yt)—%sin(wt))

w? =

If v =~ w, the amplitude of motion could be rather large!
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Pure Resonance

Case (2): X" +w?x = Fysin(wt), x(0)=0, x(0)=0

_ Fo . Fo
x(t) = z—wzsm(wt) - Ztcos(wt)
Note that the amplitude, o, of the second term is a function of :

Fot
a(t):%

which grows without bound!

Choose "Elongation diagram” to see a plot of displacement. Try exciter
frequencies close to w.
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