October 11 Math 2306 sec. 52 Fall 2021

Section 11: Linear Mechanical Equations

The displacement $x(t)$ at the time t of an object subjected to a spring force and damping force satisfied the ODE

$$
m x^{\prime \prime}+\beta x^{\prime}+k x=0
$$

- m is the mass,
- β is the damping coefficient, and
- k is the spring constant.

This was derived by summing the forces. Total force $F=m x^{\prime \prime}$, damping force $F_{\text {damping }}=\beta x^{\prime}$, spring force $F_{\text {spring }}=k x$

Free Damped Motion

The equation in standard form is

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=0
$$

where

$$
2 \lambda=\frac{\beta}{m} \quad \text { and } \quad \omega=\sqrt{\frac{k}{m}} .
$$

Three qualitatively different solutions can occur depending on the nature of the roots of the characteristic equation

Damping Types $\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=0$
The roots ${ }^{1}$ of the characteristic equation are

$$
r=-\lambda \pm \sqrt{\lambda^{2}-\omega^{2}}
$$

The motion is called

- over damped if there are two, distinct real roots (decay only, no oscillations)
- critically damped if there is one, repeated real root (fasted decay, no oscillations), and
- under damped if the roots are complex conjugates (decay with oscillations).

[^0]
Comparison of Damping

Figure: Comparison of motion for the three damping types.

Initial Conditions

Given an initial position $x(0)=x_{0}$ and initial velocity $x^{\prime}(0)=x_{1}$, the displacement will satisfy an initial value problem

$$
m x^{\prime \prime}+\beta x^{\prime}+k x=0 \quad x(0)=x_{0} \quad x^{\prime}(0)=x_{1}
$$

A couple of terms: If an object is released

- from equilibrium, it means that $x(0)=0$;
- from rest, it means that $x^{\prime}(0)=0$.

Example
A 2 kg mass is attached to a spring whose spring constant is $12 \mathrm{~N} / \mathrm{m}$. The surrounding medium offers a damping force numerically equal to 10 times the instantaneous velocity. Write the differential equation describing this system. Determine if the motion is underdamped, overdamped or critically damped.

$$
\begin{array}{ll}
\text { The oDE is } & m x^{\prime \prime}+\beta x^{\prime}+k x=0 \\
m=2 & 2 x^{\prime \prime}+10 x^{\prime}+12 x=0 \\
\beta=10 & \text { In stand ard form } \\
k=12 & x^{\prime \prime}+5 x^{\prime}+6 x=0
\end{array}
$$

with Characteristic equation

$$
\begin{gathered}
r^{2}+5 r+6=0 \\
(r+3)(r+2)=0 \\
\Rightarrow r=-3 \text { or } r=-2
\end{gathered}
$$

Two distinct red roots \rightarrow the system is over damped.

This is the answer.

Aside:

$$
\begin{gathered}
x^{\prime \prime}+5 x^{\prime}+6 x=0 \\
x^{\prime \prime}+2 \lambda x^{\prime}+w^{2} x=0
\end{gathered}
$$

Here $\omega^{2}=6$, and $2 \lambda=5 \Rightarrow \lambda=\frac{5}{2}$

$$
\begin{aligned}
\lambda^{2}=\left(\frac{5}{2}\right)^{2} & =\frac{25}{4} \\
\lambda^{2}-\omega^{2} & =\frac{25}{4}-6 \\
& =\frac{25}{4}-\frac{24}{4}=\frac{1}{4}>0
\end{aligned}
$$

$\lambda^{2}>\omega^{2} \Rightarrow$ system is ovendomped.

Example
A 64 lb object stretches a spring 4 ft in equilibrium. It is attached to a dashpot with damping constant $\beta=8 \mathrm{lb}-\mathrm{sec} / \mathrm{ft}$. The object is initially displaced 18 inches above equilibrium and given a downward velocity of $4 \mathrm{ft} / \mathrm{sec}$. Find its displacement for all $t>0$.

The ODE is $m x^{\prime \prime}+\beta x^{\prime}+k x=0$
were given $\beta=8$, we need m and k.
The weight $W=64 \mathrm{lb}$. The mass

$$
m=\frac{w}{g}=\frac{6416}{32 \mathrm{ft} / \sec ^{2}}=2 \text { slugs }
$$

The spring constant $k=\frac{w}{\delta x}=\frac{641 \mathrm{~b}}{4 \mathrm{ft}}=16 \frac{\mathrm{lb}}{\mathrm{ft}}$

The obs is $2 x^{\prime \prime}+8 x^{\prime}+16 x=0$
In standard form

$$
x^{\prime \prime}+4 x^{\prime}+8 x=0
$$

The I C are

$$
x(0)=1.5 \quad x^{\prime}(0)=-4
$$

Solve this IVP. The characteristic polynomide is

$$
\begin{gathered}
r^{2}+4 r+8=0 \\
r^{2}+4 r+4+4=0
\end{gathered}
$$

$$
(r+2)^{2}=-4
$$

$$
r+z= \pm \sqrt{-4}= \pm 2 i
$$

$r=-2 \pm 2 i \leftarrow$ under damped

$$
x_{1}=e^{-2 t} \cos (2 t), x_{2}=e^{-2 t} \sin (2 t)
$$

The general solution

$$
x=c_{1} e^{-2 t} \cos (2 t)+c_{2} e^{-2 t} \sin (2 t)
$$

Apply $x(0)=6.5, \quad x^{\prime}(0)=-4$

$$
x^{\prime}=-2 c_{1} e^{-2 t} \cos (2 t)-2 c_{1} e^{-2 t} \sin (2 t)-2 c_{2} e^{-2 t} \sin (2 t)+2 c_{2} e^{-2 t} \cos (2 t)
$$

$$
\begin{aligned}
e^{0}=1, \quad c_{0}(0) & =1, \sin (0)=0 \\
x(0)=c_{1} & =1.5 \Rightarrow c_{1}=1.5 \\
x^{\prime}(0)=-2 c_{1}+2 c_{2} & =-4 \\
-3+2 c_{2} & =-4 \\
2 c_{2} & =-1 \\
c_{2} & =-0.5
\end{aligned}
$$

The displacement

$$
x=1.5 e^{-2 t} \cos (2 t)-0.5 e^{-2 t} \sin (2 t)
$$

Driven Motion

We can consider the application of an external driving force (with or without damping). Assume a time dependent force $f(t)$ is applied to the system. The ODE governing displacement becomes

$$
m \frac{d^{2} x}{d t^{2}}=-\beta \frac{d x}{d t}-k x+f(t), \quad \beta \geq 0
$$

Divide out m and let $F(t)=f(t) / m$ to obtain the nonhomogeneous equation

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F(t)
$$

Forced Undamped Motion and Resonance

Consider the case $F(t)=F_{0} \cos (\gamma t)$ or $F(t)=F_{0} \sin (\gamma t)$, and $\lambda=0$. Two cases arise
(1) $\gamma \neq \omega$, and (2) $\gamma=\omega$.

Taking the sine case, the DE is

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

with complementary solution

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

Note that

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

Using the method of undetermined coefficients, the first guess to the particular solution is

$$
x_{p}=A \cos (\gamma t)+B \sin (\gamma t) \quad \text { If } \quad \gamma \neq \omega \text {, then }
$$

$x_{p} \rightarrow x_{c}$ howe no like terms in.
common, so this x_{p} is correct.

$$
x=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)+A \cos (\gamma t)+B \sin (\gamma t)
$$

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

Note that

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

Using the method of undetermined coefficients, the first guess to the particular solution is

$$
x_{p}=A \cos (\gamma t)+B \sin (\gamma t) \quad \text { if } \gamma=\omega \text {, then this }
$$

has like terms in contrition w / x_{c}. we have to multiply by t.

$$
x_{p}=(A \cos (\omega t)+B \sin (\omega t)) t=A t \cos (\omega t)+B t \sin (\omega t) .
$$

Then grows without

$$
X=C_{1} \cos (\omega t)+C_{2} \sin (\omega t)+A t \cos (\omega t)+B t \sin (\omega t)
$$

Forced Undamped Motion and Resonance

For $F(t)=F_{0} \sin (\gamma t)$ starting from rest at equilibrium:

Case (1): $\quad x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t), \quad x(0)=0, \quad x^{\prime}(0)=0$

$$
x(t)=\frac{F_{0}}{\omega^{2}-\gamma^{2}}\left(\sin (\gamma t)-\frac{\gamma}{\omega} \sin (\omega t)\right)
$$

If $\gamma \approx \omega$, the amplitude of motion could be rather large!

Pure Resonance

Case (2): $\quad x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\omega t), \quad x(0)=0, \quad x^{\prime}(0)=0$

$$
x(t)=\frac{F_{0}}{2 \omega^{2}} \sin (\omega t)-\frac{F_{0}}{2 \omega} t \cos (\omega t)
$$

Note that the amplitude, α, of the second term is a function of t :

$$
\alpha(t)=\frac{F_{0} t}{2 \omega}
$$

which grows without bound!

Choose "Elongation diagram" to see a plot of displacement. Try exciter frequencies close to ω.

[^0]: ${ }^{1}$ Observation: Conservation of energy ensures that for all cases with damping, the real part of the roots of the characteristic equation $(-\lambda)$ MUST be negative:

