October 11 Math 2306 sec. 53 Fall 2024

Section 9: Method of Undetermined Coefficients

We are considering nonhomogeneous, linear ODEs

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \cdots + a_0 y = g(x)$$

with restrictions on the left and right sides.

- The left side must be constant coefficient.
- The right side, g(x), has to be one of the following function types:
 - \diamond polynomials,
 - \diamond exponentials,
 - \diamond sines and/or cosines,
 - \diamond and products and sums of the above kinds of functions

The **general solution** will have the form $y = y_c + y_p$. The process here is for finding y_p .

The Method of Undetermined Coefficients

- 1. Confirm the ODE has the right properties (constant coef. left, correct type^a of right side).
- 2. Find y_c and classify the right hand side g.
- 3. Set up the guess y_p based on g.
- 4. Compare the y_p guess to y_c .
 - 4.1. If they have no like terms in common, proceed to the next step.
 - 4.2. If the y_p has one or more like terms in common with y_c , multiply by *x* enough times to eliminate all duplication.
- 5. Substitute the assumed y_p into the ODE and match *like terms* to find the coefficients that work.

^apolynomial, exponential, sine/cosine, sum/product of these three

Examples

.

Find the general solution of the ODE.

-

$$y'' - 2y' + y = -4e^{x}$$

The left is constat coefficient at the right side,
 $g(x_1 = -4e^{x})$, is an exponential. Find ye, ye
solver $y'' - 2y' + y = 0$. The Characteristic
equation is $r^2 - 2r + l = 0 \Rightarrow (r - l)^2 = 0$
 $r = l$ is a double root.
 $y_1 = e^{1x}$, $y_2 = xe^{1x}$. So
 $y_c = c, e^{x} + c_2 \times e^{x}$

$$y''-2y'+y=-4e^x$$

Next, find
$$y_{e}$$
, $g(x) = -y_{e}^{x}$, $y_{e} = Ae^{x}$.
This deplicates y_{i} from y_{e} . Modifying y_{e} .
 $y_{e} = (Ae^{x})x^{2} = Axe^{x}e^{x}$. This is correct.
Sub y_{e} into the aDe^{z} .
 $y_{e} = Ax^{2}e^{x}$
 $y_{e}' = Ax^{2}e^{x} + 2Axe^{a}$
 $y_{r}'' = Ax^{2}e^{x} + 2Axe^{a} + 2Ae^{a}$
 $= Ax^{2}e^{x} + y_{e} + 2Ae^{a}$

 $A_{x^{2}e^{*}} + YA_{xe^{*}} + \frac{1}{2Ae^{*}} - 2(A_{x^{2}e^{*}} + \frac{1}{2Axe^{*}}) + A_{x^{2}e^{*}} = -4e^{*}$ Collect $\chi^{2}e^{*}$, χe^{*} and e^{*}

 $x^{2} \overset{\times}{e} (A - zA + A) + x \overset{\times}{e} (YA - YA) + \overset{\times}{e} (zA) = -Y \overset{\times}{e}$ $\overset{\vee}{a} \overset{\vee}{a} \overset{\vee}{a} 2A \overset{\times}{e} = -Y \overset{\times}{e}$ $2A - Y \overset{\times}{e} = -Z$

So $y_{p} = -Z \times z \overset{\times}{e}$ with $y_{c} = c, \overset{\times}{e} + c_{z} \times \overset{\times}{e}$

The general solution, y= yc+yp,

 $y = C_1 \overset{\times}{e} + C_2 \times \overset{\times}{e} - 2 \times \overset{\times}{e}$

Find the form of the particular soluition

$$y'' + 6y' + 13y = xe^{-3x} + \cos(2x) + 4e^{-3x}\sin(2x)$$

Find
$$y_c$$
 since it can affect y_p . y_c solves
 $y'' + (by' + 13y = 0$. The characteristic eqn is:
 $r^2 + (br + 13 = 0) \Rightarrow r^2 + (br + 9) = -9$
 $(r + 3)^2 = -9$
 $r + 3 = \pm 2i, \Rightarrow r = -3 = 2$
 $y_1 = e^{-3x} \cos(2x), y_2 = e^{-3x} \sin(2x)$
 $y'' + 6y' + 13y = xe^{-3x} + \cos(2x) + 4e^{-3x}\sin(2x)$

Let II use superposition bet
$$y_{P_1}$$
 solve
 $y'' + 6b' + 13y = xe^{-3x}$; $g_1(x) = xe^{-3x}$
Based on g_1 , $y_{P_1} = (Ax+B)e^{-3x} = Axe^{-3x} + Be^{-3x}$
This is correct. Let y_{P_2} solve
 $y'' + 6b' + 13y = Cos(2x)$; $g_2(x) = Cos(2x)$.
Based on g_2 , $y_{P_2} = Cos(2x) + DSin(2x)$
This is the corr $\pm y_{P_2}$ form.
 $y_1 = e^{-3x} cos(2x)$, $y_2 = e^{-3x}Sin(2x)$
 $y'' + 6y' + 13y = xe^{-3x} + cos(2x) + 4e^{-3x}sin(2x)$

Let
$$y_{P_3}$$
 solve $y'' + 6y' + 13y = 4e^{-3x} S \cdot n(2x)$,
 $g_3(x) = 4e^{-3x} S \cdot n(2x)$, $y_{P_3} = Ee^{-3x} S \cdot n(2x) + Fe^{-3x} C_{s}(2x)$
This deplicates y_c . Models y_{P_3} .
 $y_{P_3} = (Ee^{-3x} S \cdot n(2x) + Fe^{-3x} C_{s}(2x)) \chi$
 $= E \times e^{-3x} S \cdot n(2x) + F \times e^{-3x} C_{s}(2x)$

This is connect.
For the whole
$$ODE$$
,
 $y_{p} = (Ax+B)e^{3x} + CCos(z_{x}) + DSin(z_{x}) + Exe^{-3x}Sin(z_{x}) + Fxe^{-3x}Cs(z_{x})$

Find the form of the particular soluition

$$y''' - y'' + y' - y = \cos x + x^{4}$$

Find y_{c} , y_{c} solves $y''' - y'' + y' - y = 0$.
The characheristic eq. h is
 $r^{3} - r^{2} + r - 1 = 0$
 $r^{2}(r-1) + (r-1) = 0 \Rightarrow (r^{2}+1)(r-1) = 0$
 $r = 1$ or $r = \pm i = 0 \pm 1i$ $q = 0$, $\beta = 1$
 $y_{1} = e^{2x}$, $y_{2} = e^{0x} C_{05}(1x)$, $y_{3} = e^{0x} Sin(1x)$
 $y_{1} = e^{x}$, $y_{1} = Cosx$, $y_{2} = Sinx$

 $y''' - y'' + y' - y = \cos x + x^4$ Let yp, solve, y" - b" + b' - y = Cost g, (x) = Corx, yp= (A Corx + BSmx)x ye= Ax Cosx + Bx Sinx solve y" - y" + b' - y = x" hat you $g_{z}(x) = X^{2}$, $y_{p_{z}} = Cx^{4} + Px^{3} + Ex^{2} + Fx + G$ the whole ODE $y_{p} = A_{X} C_{0} x + B_{X} S_{m} x + C_{X}^{M} + D_{X}^{3} + E_{X}^{2} + F_{X} + G$