October 11 Math 2306 sec. 53 Fall 2024

Section 9: Method of Undetermined Coefficients

We are considering nonhomogeneous, linear ODEs

$$
a_ny^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_0y = g(x)
$$

with restrictions on the left and right sides.

- ▶ The left side must be **constant coefficient**.
- \blacktriangleright The right side, $q(x)$, has to be one of the following function types:
	- \diamondsuit polynomials,
	- \Diamond exponentials,
	- ♢ sines and/or cosines,
	- \diamond and products and sums of the above kinds of functions

The **general solution** will have the form $y = y_c + y_p$. The process here is for finding *yp*.

The Method of Undetermined Coefficients

- 1. Confirm the ODE has the right properties (constant coef. left, correct type*^a* of right side).
- 2. Find *y^c* and classify the right hand side *g*.
- 3. Set up the guess *y^p* based on *g*.
- 4. Compare the y_p guess to y_c .
	- 4.1. If they have no like terms in common, proceed to the next step.
	- 4.2. If the y_p has one or more like terms in common with y_c , multiply by *x* enough times to eliminate all duplication.
- 5. Substitute the assumed *y^p* into the ODE and match *like terms* to find the coefficients that work.

a polynomial, exponential, sine/cosine, sum/product of these three

Examples

Find the general solution of the ODE.

╭

$$
y'' - 2y' + y = -4e^{x}
$$
\nThe left is constant, each of the right side, $9(x) = -4e^{x}$, is an exponential. Find $y = -9e^{x}$, is an exponential. Find $y = -9e^{x}$, $y = 2e^{x} + 4y = 0$.

\nwhere $y'' - 2e^{x} + 4y = 0$. The characteristic equation is $(2 - 2e^{x} + 1) = 0 \Rightarrow (e - 1)^{2} = 0$.

\nLet $y = \frac{1}{2}e^{x} + 4e^{x} + 4e^{x}$. So $y = \frac{1}{2}e^{x} + 4e^{x} + 4e^{x}$.

\nLet $y = \frac{1}{2}e^{x} + 4e^{x} + 4e^{x}$.

\nLet $y = \frac{1}{2}e^{x} + 4e^{x}$ is an exponential function.

$$
y''-2y'+y=-4e^x
$$

Next, find
$$
ye = 3(x) = -4e^{x}
$$
, $ye = Ae^{x}$.
\nThis implies $4x^{11}cdot24e^{x}$ y_{11} from ye_{21} . Modify $10e_{21}$
\n $ye^{x} = (Ae^{x})x^{2} = Ax^{2}e^{x}$. Thus is correct.
\nSub $ye^{x} = Ax^{2}e^{x}$
\n $ye^{x} = Ax^{2}e^{x} + 2Axe^{x}$
\n $ye^{x} = Ax^{2}e^{x} + 2Axe^{x} + 2Axe^{x} + 2Ae^{x}$
\n $= Ax^{2}e^{x} + 4Axe^{x} + 2Ae^{x}$
\n $= Ax^{2}e^{x} + 4Axe^{x} + 2Ae^{x}$
\n $y'' - 2y' + y = -4e^{x}$

 $Ax^2e^x + YAxe^x + iAe^x - \lambda(Ax^2e^x + \lambda Axe^x) + Axe^x = -\lambda e^x$ Culled x^2e^x , x^2e^x and e^x

 $x^{2}e^{x}(A-zA+A)+xe^{x}(4A-yA)+e^{x}(2A)-ye^{x}$
 $x^{2}e^{x}(A-zA+A)+xe^{x}(4A-yA)+e^{x}(2A)-ye^{x}$
 $x^{2}e^{x}-ye^{x}$
 $2A=-4e^{x}e^{x}-2$

 S_0 y_{e^-} - $2x^2e^x$ with $y_c = c, e^{\frac{x}{c}} + c_x \times e^{\frac{x}{c}}$

The general solution, b= Yo+Yp,

 $y = C_1 e + C_2 x e^{x} - 2x e^{x}$

Find the form of the particular soluition

$$
y'' + 6y' + 13y = xe^{-3x} + cos(2x) + 4e^{-3x}sin(2x)
$$

Find
$$
y_c
$$
 $\sin c$ π $\cos(4\pi c)$ $\sin(4\pi c)$ $\cos(4\pi c)$

\nUsing $y^4 + 6y^3 + 13y = 0$. The 6π $\sin(4\pi c)$ 15

\n $(c + 3)^2 = -4$

Let I1 use
$$
supers/110
$$
 and lyp_1 such that y_1 is the y_1 and y_2 is the y_1 and y_2 .

\nThese 100 and 100 and y_1 are the $3x$.

\nThese 100 and 100 and 100 are the $3x$.

\nThus, if $15y = 0$ and $15y = 0$ and $15y = 0$.

\nThese 100 and 90 and $15y = 0$ and $15y = 0$.

\nThese 100 and 90 and $15y = 0$ and $15y = 0$.

\nThus, if $15y = 0$ and $15y = 0$ and $15y = 0$.

\nThis is the $15y = 0$ and $15y = 0$.

\nThis is the $15y = 0$ and $15y = 0$.

\nThis is the $15y = 0$ and $15y = 0$.

\nThus, $15y = 0$ and $15y = 0$ and $15y = 0$.

\nThis is the $15y = 0$ and $15y = 0$.

\nThus, $15y = 0$ and $15y = 0$ and $15y = 0$.

\nThus, $15y = 0$ and $15y = 0$ and $15y = 0$.

\nThus, $15y = 0$ and $15y = 0$ and $15y = 0$.

\nThus, $15y = 0$ and $15y = 0$ and $15y = 0$.

\nThus, $15y = 0$ and $15y = 0$ and $15y = 0$.

\nThus,

$$
14 \text{ y } \rho_3 \text{ solu} \text{ y}'' + \omega \text{ y}'+13 \text{ y} = 4 e^{-3x} \text{ S} \cdot \text{n} (2 \text{x}),
$$
\n
$$
33 \text{ (x)} = 4 e^{-3x} \text{ S} \cdot \text{n} (2 \text{x}), \quad 9 \rho_3 = E e^{-3x} \text{ S} \cdot \text{n} (2 \text{x}) + F e^{-3x} \text{ G} \cdot (2 \text{x})
$$
\n
$$
7 \text{ h is } 4 \text{ v } \rho \text{ index } y_c, \quad \text{Mod} \cdot \text{ L } y \rho_3.
$$
\n
$$
y_{\rho_3} = (E e^{-3x} \text{ S} \cdot \text{n} (2 \text{x}) + F e^{-3x} \text{ G} \cdot (2 \text{x})) \text{ x}
$$
\n
$$
= E \text{ x } e^{-3x} \text{ S} \cdot \text{n} (3 \text{x}) + F \text{ x } e^{-3x} \text{ G} \cdot (2 \text{x})
$$

This is connected.
\nFor the whole ODE
\n
$$
y_{e} = (Ax+B)e^{-3x} + CCs(2x) + DS(n(2x) + Exe^{-3x}sin(2x) + Fxe^{-3x}csc(2x))
$$

Find the form of the particular soluition

$$
y''' - y'' + y' - y = \cos x + x^{4}
$$
\nFind y_{c} . y_{c} $s_{\frac{1}{2}}\log s$ $y'' - y'' + y' - y = 0$.

\nThe $\frac{1}{2}\log s$ $\log s$ $y'' - y'' + y' - y' = 0$.

\nThe $\frac{1}{2}\log s$ $\log s$ $y^{1/2}$ $\log s$

 $y''' - y'' + y' - y = cos x + x^4$ Let y_{e_1} silve $y'' - y'' + y' - y = C$ 9.66 = Corx, 90° (A Corx + B S x X) x y_e = Ax Cos x + Bx Sinx Let y_{r_1} solve $y'' - y'' + y' - y = x^4$ $92(x) = x^4$, $992 = Cx^4 + Dx^3 + Ex^2 + Fx + G$ the whole ODE $y_{p} = Ax$ C $sx + Bx$ S $m \times x + Cx^{4} + Dx^{3} + Ex^{2} + Fx + G$