October 12 Math 2306 sec. 52 Fall 2022

Section 11: Linear Mechanical Equations

Simple Harmonic Motion

Figure: We track the displacement x from the equilibrium position. Recall δx is the displacement in equilibrium. We assume there are no damping nor external forces (for now).

Simple Harmonic Motion

We derive the equation for displacement. Given initial displacement x_{0} and initial velocity x_{1},

$$
x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=x_{1}
$$

where $\omega^{2}=\frac{k}{m}=\frac{g}{\delta x}$.
k-spring constant, m-object's mass, g-acceleration due to gravity.

Simple Harmonic Motion

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

Characteristics of the system include

- the period $T=\frac{2 \pi}{\omega}$,
- the frequency $f=\frac{1}{T}=\frac{\omega}{2 \pi}^{1}$
- the circular (or angular) frequency ω, and
- the amplitude or maximum displacement $A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}$
${ }^{1}$ Various authors call f the natural frequency and others use this term for ω. $\overline{\bar{z}}$

Amplitude and Phase Shift

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

We can formulate the solution in terms of a single sine (or cosine) function. Letting $A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}$,

$$
\begin{gathered}
x(t)=A \sin (\omega t+\phi) \quad \text { where } \\
\sin \phi=\frac{x_{0}}{A}, \quad \text { and } \quad \cos \phi=\frac{x_{1}}{\omega A} .
\end{gathered}
$$

Or

$$
\begin{gathered}
x(t)=A \cos (\omega t-\hat{\phi}) \quad \text { where } \\
\cos \hat{\phi}=\frac{x_{0}}{A}, \quad \text { and } \quad \sin \hat{\phi}=\frac{x_{1}}{\omega A}
\end{gathered}
$$

Example
A 4 pound weight stretches a spring 6 inches. The mass is released from a position 4 feet above equilibrium with an initial downward velocity of $24 \mathrm{ft} / \mathrm{sec}$. Find the equation of motion, the period, amplitude, phase shift, and frequency of the motion. After how many seconds is the mass at the equilibrium position for the first time? (Take $g=32 \mathrm{ft} / \mathrm{sec}^{2}$.)
The on \bar{x} is $m x^{\prime \prime}+k x=0 \Rightarrow x^{\prime \prime}+\omega^{2} x=0$
we con find m and k.

$$
\begin{array}{ll}
W=m g & W=k \delta x \\
4 / b=m\left(32 \mathrm{ft} / \mathrm{sec}^{2}\right) & 41 b=k(6 \mathrm{in})=k\left(\frac{1}{2} \mathrm{ft}\right) \\
\Rightarrow m=\frac{4}{32}=\frac{1}{8} \operatorname{sing} & k=\frac{41 b}{1 / 2 \mathrm{ft}}=8 \frac{16}{\mathrm{ft}}
\end{array}
$$

$$
\omega^{2}=\frac{k}{m}=\frac{8}{1 / 8} \frac{1}{\sec ^{2}}=64 \frac{1}{\sec ^{2}}
$$

Note that $\omega^{2}=\frac{\partial}{\delta x}=\frac{32 \mathrm{ft} / \sec ^{2}}{1 / 2 \mathrm{ft}}=64 \frac{1}{\sec ^{2}}$

The $a>E$ is $\quad x^{\prime \prime}+64 x=0$.
The initial conditions are

$$
x(0)=4 \quad x^{\prime}(0)=-24
$$

The characteristic equation is (using r)

$$
r^{2}+64=0 \Rightarrow r^{2}=-64
$$

$$
\begin{aligned}
& r= \pm \sqrt{-64}= \pm 8 i \\
& x_{1}=\cos (8 t), \quad x_{2}=\sin (8 t) \\
& x(t)=c_{1} \cos (8 t)+c_{2} \sin (8 t)
\end{aligned}
$$

Apply $x(0)=4, \quad x^{\prime}(0)=-24$

$$
\begin{aligned}
& x(0)=c_{1} \cos (0)+c_{2} \sin (0)=4 \Rightarrow c_{1}=4 \\
& x^{\prime}(t)=-8 c_{1} \sin (8 t)+8 c_{2} \cos (8 t) \\
& x^{\prime}(0)=-8 c_{1} \sin (0)+8 c_{2} \cos (0)=-24 \\
& 8 c_{2}=-24 \Rightarrow c_{2}=\frac{-24}{8}=-3
\end{aligned}
$$

The equation of motion is

$$
x(t)=4 \cos (8 t)-3 \sin (8 t)
$$

The period $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{8}=\frac{\pi}{4}$
The frequency $f=\frac{1}{T}=\frac{4}{\pi}$
The amplitude $A=\sqrt{y^{2}+(-3)^{2}}=5$
writing x in the form

$$
\begin{aligned}
x(t) & =\ldots \operatorname{vn}(\omega t+\phi) \\
& =5 \sin (8 t+\phi)
\end{aligned}
$$

where $\quad \sin \phi=\frac{4}{5}, \cos \phi=\frac{-3}{5}$
the phase
shot t

$$
\phi=\operatorname{Cos}^{-1}\left(\frac{-3}{5}\right) \approx 2.21 \quad \begin{aligned}
& \text { a⿻o一冂人} \\
& 127^{\circ}
\end{aligned}
$$

$$
x(t)=5 \sin (8 t+2.21)
$$

The object is at equilibrium whenever

$$
8 t+\phi=n \pi \quad n \text { on integer }
$$

The first time is when $n=1$

$$
\begin{aligned}
8 t+\phi & =\pi \\
\Rightarrow 8 t & =\pi-\phi \\
t & =\frac{\pi-\phi}{8} \approx 0.116 \mathrm{sec} .
\end{aligned}
$$

Free Damped Motion

Figure: If a damping force is added, we'll assume that this force is proportional to the instantaneous velocity.

Free Damped Motion
Now we wish to consider an added force corresponding to damping-friction, a dashpot, air resistance.
Total Force = Force of damping + Force of spring

$$
\begin{aligned}
& \quad m \frac{d^{2} x}{d t^{2}}=-\beta \frac{d x}{d t}-k x \quad \Rightarrow \\
& m x^{\prime \prime}+\beta x^{\prime}+k x=0
\end{aligned}
$$

$2^{\text {nd }}$ order, linear, constant coefficient, homogeneous ODE
standard form

$$
x^{\prime \prime}+\frac{\beta}{m} x^{\prime}+\frac{k}{m} x=0
$$

$$
\begin{aligned}
& 2 \lambda=\frac{\beta}{m}, \omega^{2}=\frac{k}{m} \\
& x^{\prime \prime}+2 \lambda x^{\prime}+\omega^{2} x=0
\end{aligned}
$$

Free Damped Motion

$$
\frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=0
$$

This is a second order, linear, constant coefficient, homogeneous ODE with characteristic equation

$$
r^{2}+2 \lambda r+\omega^{2}=0
$$

having roots

$$
r_{1,2}=-\lambda \pm \sqrt{\lambda^{2}-\omega^{2}}
$$

Three qualitatively different solutions can occur depending on the nature of the roots of the characteristic equation.

Case 1: $\lambda^{2}>\omega^{2}$ Overdamped

$$
x(t)=e^{-\lambda t}\left(c_{1} e^{t \sqrt{\lambda^{2}-\omega^{2}}}+c_{2} e^{-t \sqrt{\lambda^{2}-\omega^{2}}}\right)
$$

Figure: Two distinct real roots. No oscillations. Approach to equilibrium may be slow.

Case 2: $\lambda^{2}=\omega^{2}$ Critically Damped

$$
x(t)=e^{-\lambda t}\left(c_{1}+c_{2} t\right)
$$

Figure: One real root. No oscillations. Fastest approach to equilibrium.

Case 3: $\lambda^{2}<\omega^{2}$ Underdamped

$$
x(t)=e^{-\lambda t}\left(c_{1} \cos \left(\omega_{1} t\right)+c_{2} \sin \left(\omega_{1} t\right)\right), \quad \omega_{1}=\sqrt{\omega^{2}-\lambda^{2}}
$$

Figure: Complex conjugate roots. Oscillations occur as the system approaches (resting) equilibrium.

Comparison of Damping

Figure: Comparison of motion for the three damping types.

