October 13 Math 2306 sec. 52 Spring 2023

Section 10: Variation of Parameters

We're considering a second order, nonhomogeneous linear ODE in standard form.

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = g(x) \tag{1}$$

A D N A D N A D N A D N

October 12, 2023

1/18

Let $\{y_1(x), y_2(x)\}$ Be a fundamental solution set for the associated homogeneous equation.

Variation of parameters is a method for finding a particular solution y_p assuming that it can be found in the form

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$$

for some functions u_1 and u_2 .

$$y'' + P(x)y' + Q(x)y = g(x)$$

We were in the process of deriving formulas for the functions u_1 and u_2 so that

$$y_p = u_1(x)y_1(x) + u_2(x)y_2(x).$$

We had arrived at the system of equations

which can be stated using a matrix formalism as

$$\begin{bmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{bmatrix} \begin{bmatrix} u'_1 \\ u'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ g \end{bmatrix}.$$

Any method for solving linear systems can be used here, but we'll use Cramer's rule to solve for u'_1 and u'_2 . We integrate these to get u_1 and u_2 .

Cramer's Rule

Consider the linear system of two equations in two unknowns

$$ax + by = e$$

 $cx + dy = f$ i.e., $\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} e \\ f \end{bmatrix}$

and define the three matrices

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad A_x = \begin{bmatrix} e & b \\ f & d \end{bmatrix}, \text{ and } A_y = \begin{bmatrix} a & e \\ c & f \end{bmatrix}$$

If det(A) \neq 0, then the system is uniquely solvable^a, and the solution

$$x = rac{\det(A_x)}{\det(A)}$$
 and $y = rac{\det(A_y)}{\det(A)}$

^aThis is a well known result that can be found in any elementary discussion of Linear Algebra.

Complete the Derivation of y_p

$$\begin{bmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{bmatrix} \begin{bmatrix} u'_1 \\ u'_2 \end{bmatrix} = \begin{bmatrix} 0 \\ g \end{bmatrix}$$
Let $W = dt \begin{bmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{bmatrix}$ (me wronishian)
 $W_1 = dut \begin{bmatrix} 0 & y_2 \\ g & y'_2 \end{bmatrix} = 0 - gy_2 = -gy_2$
 $W_2 = dut \begin{bmatrix} y_1 & 0 \\ y'_1 & g \end{bmatrix} = y_1g - 0 = gy_1$
 $u'_1 = \frac{U_1}{W} = -\frac{gy_2}{W}$, $u'_2 = \frac{W_2}{W} = \frac{gy_1}{W}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$u_1 = \int \frac{-392}{w} dx$$
, $u_2 = \int \frac{391}{w} dx$

Variation of Parameters

$$y'' + P(x)y' + Q(x)y = g(x)$$

If $\{y_1, y_2\}$ is a fundamental solution set for the associated homogeneous equation, then the general solution is

 $y = y_c + y_p$ where

 $y_c = c_1 y_1(x) + c_2 y_2(x)$, and $y_\rho = u_1(x) y_1(x) + u_2(x) y_2(x)$.

Letting *W* denote the Wronskian of y_1 and y_2 , the functions u_1 and u_2 are given by the formulas

$$u_1 = \int \frac{-y_2g}{W} dx$$
, and $u_2 = \int \frac{y_1g}{W} dx$.

< 口 > < 同 > < 回 > < 回 > < 回 > <

Example:

Find the general solution of the ODE $y'' + y = \tan x$.

Find yc: yc solves yc" + yc = 0 Characteristic egn m2+1=0 Jy ip $m^{2} - 1$, $m = \pm \sqrt{-1} = \pm i$ q=0 B=1 $y_1 = e^{0x} C_{os}(1x)$, $y_2 = e^{0x} S_{in}(1x)$ Y = Corx, yz = Sinx Ye= C, Gosx + C2 Sinx Find by Using Variation of parameters < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ yp= 4, y, + 42 yu

October 12, 2023 7/18

$$g(x) = ton x$$
, $W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = \begin{vmatrix} Corx & Sinx \\ -Sinx & Corx \end{vmatrix}$
= $Cor^2 x - (-Sinr^2 x) = 1$

$$u_{1} = \int \frac{352}{W} dx = -\int \frac{\tan x \sin x}{1} dx = -\int \frac{\sin x}{\cos x} \sin x dx$$

$$= -\int \frac{S_{1}n^{3}x}{C_{r}x} dx = -\int \frac{(1-C_{0}s^{2}x)}{C_{0}sx} dx = \int \frac{C_{0}s^{2}x-1}{C_{0}sx} dx$$

$$= \int (G_{SSX} - Se_{CX}) dx$$

$$u_{1} = S_{InX} - \int u_{1} \int Se_{CX} + fanx \int u_{2} = \int \frac{S_{InX}}{G_{IX}} G_{IX} dx$$

$$u_{2} = \int \frac{9 S_{I}}{W} dx = \int \frac{f_{InX}}{1} dx = \int \frac{S_{InX}}{1} dx = \int \frac{S_{InX}}{G_{IX}} \frac{S_{InX}}{G_{IX}} dx$$

October 12, 2023 8/18

=
$$\int Sinx dx$$

 $u_z = -Cos x$
 $y_1 = Cos x$, $y_z = Sinx$, $u_1 = Sinx - DelSecx + tonx]$, $u_z = -Cos x$
 $y_p = u_1 y_1 + u_z y_z$
 $= (Sinx - DelSecx + tonx]) Os x + (-Cos x) Sin x$
 $= Sinx Cos x - Cos x DelSecx + tonx] - Cos x Sin x$
 $y_p = -Cos x DelSecx + tonx]$
The general solution, $y_c + y_p$, is
 $y_1 = C_1 Cos x + C_2 Sin x - Cos x DelSecx + tonx]$
 $y_1 = C_1 Cos x + C_2 Sin x - Cos x DelSecx + tonx]$

Solve the IVP

 $x^{2}v'' + xv' - 4v = 8x^{2}$, v(1) = 1, v'(1) = 1The complementary solution of the ODE is $y_c = c_1 x^2 + c_2 x^{-2}$. well find yp in the form yp= U, y, + U2 yz. The ODE in standed form is y" + to y' - 4x2y = 8 $\mathcal{L}(x) = 8$ $y_1 = x^2$ $y_2 = x^2$ $W = \begin{vmatrix} y_1 & y_2 \\ y_1 & y_2 \end{vmatrix} = \begin{vmatrix} x^2 & \overline{x^2} \\ zx & -2x^{-3} \end{vmatrix} = x^2 \left(-2x^{-3} \right) - 2x \left(x^{-2} \right)$

$$= -2x^{-1} - 2x^{-1} = -4x^{-1}$$

$$y_{1} = X^{2}$$
, $y_{2} = X^{2}$, $g(x) = 8$, $W = -4x^{2}$

$$u_{1} = \int \frac{-95}{10} \frac{1}{2} dx = \int \frac{-8x^{2}}{-4x^{-1}} dx = 2\int x^{2} x dx$$

$$u_{z} = \int \frac{g y_{1}}{v} dx = \int \frac{g x^{2}}{-4x^{-1}} dx = -2 \int x^{2} \cdot x dx$$

$$= -2 \int x^3 dx = -2 \frac{x^4}{4} = -\frac{1}{2} x^4$$

 $y_1 = x^2$, $y_2 = x^2$, $u_1 = 2h(x)$, $u_2 = \frac{1}{2}x^4$ $x = x^2$, $y_2 = x^2$, $u_1 = 2h(x)$, $u_2 = \frac{1}{2}x^4$

October 12, 2023 14/18

$$y_{p} = u_{1}y_{1} + u_{2}y_{2}$$

$$= Zh_{1}x_{1}(x^{2}) + (\frac{1}{2}x^{4})(x^{2})$$

$$y_{p} = Q_{1}x^{2}h_{2}x_{2} - \frac{1}{2}x^{2}$$

$$y_{p} = y_{2} + y_{p}$$

$$= c_{1}x^{2} + c_{2}x^{2} + 2x^{2}h_{4}x_{1} - \frac{1}{2}x^{2}$$

We ran out of time and didn't finish solving the IVP. This is the general solution to the ODE.