October 13 Math 2306 sec. 52 Spring 2023

Section 10: Variation of Parameters

We're considering a second order, nonhomogeneous linear ODE in standard form.

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+P(x) \frac{d y}{d x}+Q(x) y=g(x) \tag{1}
\end{equation*}
$$

Let $\left\{y_{1}(x), y_{2}(x)\right\}$ Be a fundamental solution set for the associated homogeneous equation.

Variation of parameters is a method for finding a particular solution y_{p} assuming that it can be found in the form

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

for some functions u_{1} and u_{2}.

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

We were in the process of deriving formulas for the functions u_{1} and u_{2} so that

$$
y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) .
$$

We had arrived at the system of equations

$$
\begin{aligned}
& y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0 \\
& y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=g,
\end{aligned}
$$

which can be stated using a matrix formalism as

$$
\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
g
\end{array}\right] .
$$

Any method for solving linear systems can be used here, but we'll use Cramer's rule to solve for u_{1}^{\prime} and u_{2}^{\prime}. We integrate these to get u_{1} and u_{2}.

Cramer's Rule

Consider the linear system of two equations in two unknowns

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned} \text { i.e., }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
e \\
f
\end{array}\right]
$$

and define the three matrices

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \quad A_{x}=\left[\begin{array}{ll}
e & b \\
f & d
\end{array}\right], \quad \text { and } \quad A_{y}=\left[\begin{array}{ll}
a & e \\
c & f
\end{array}\right] .
$$

If $\operatorname{det}(A) \neq 0$, then the system is uniquely solvable ${ }^{a}$, and the solution

$$
x=\frac{\operatorname{det}\left(A_{x}\right)}{\operatorname{det}(A)} \quad \text { and } \quad y=\frac{\operatorname{det}\left(A_{y}\right)}{\operatorname{det}(A)}
$$

${ }^{a}$ This is a well known result that can be found in any elementary discussion of Linear Algebra.

Complete the Derivation of y_{p}

$$
\left[\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{\prime} \\
u_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
0 \\
g
\end{array}\right]
$$

Let $W=\operatorname{dt}\left[\begin{array}{ll}y_{1} & y_{2} \\ y_{1}^{\prime} & y_{2}^{\prime}\end{array}\right] \quad$ (the wronshian)

$$
\begin{aligned}
& w_{1}=\operatorname{det}\left[\begin{array}{ll}
0 & y_{2} \\
g & y_{2}^{\prime}
\end{array}\right]=0-g y_{2}=-g y_{2} \\
& w_{2}=\operatorname{det}\left[\begin{array}{ll}
y_{1} & 0 \\
y_{1} & g
\end{array}\right]=y_{1} g-0=g y_{1} \\
& u_{1}^{\prime}=\frac{w_{1}}{w}=\frac{-g y_{2}}{w}, \quad u_{2}^{\prime}=\frac{w_{2}}{w}=\frac{g y_{1}}{w}
\end{aligned}
$$

$$
u_{1}=\int \frac{-g y_{2}}{w} d x, \quad u_{2}=\int \frac{g y_{1}}{w} d x
$$

Variation of Parameters

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

If $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for the associated homogeneous equation, then the general solution is

$$
y=y_{c}+y_{p} \quad \text { where }
$$

$$
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x), \quad \text { and } \quad y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

Letting W denote the Wronskian of y_{1} and y_{2}, the functions u_{1} and u_{2} are given by the formulas

$$
u_{1}=\int \frac{-y_{2} g}{W} d x, \quad \text { and } \quad u_{2}=\int \frac{y_{1} g}{W} d x
$$

Example:
Find the general solution of the ODE $y^{\prime \prime}+y=\tan x$.
Find y_{c} : y_{c} solves $y_{c}{ }^{\prime \prime}+y_{c}=0$
Characteristic en $m^{2}+1=0$

$$
\begin{array}{cl}
c^{2}=-1, m= \pm \sqrt{-1}= \pm i & \alpha \pm i \beta \\
m_{1}=e^{o x} \cos (1 x), y_{2}=e^{0 x} \sin (1 x) & \alpha=0 \quad \beta=1 \\
y_{1}=\cos x, y_{2}=\sin x & \\
y_{c}=c_{1} \cos x+c_{2} \sin x &
\end{array}
$$

Find up using variation of parameters

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}
$$

$$
\begin{aligned}
& g(x)=\tan x, W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right| \\
& =\cos ^{2} x-\left(-\sin ^{2} x\right)=1 \\
& y_{1}=\cos x, y_{2}=\sin x, \quad g(x)=\tan x, \quad w=1 \\
& u_{1}=\int \frac{-g y_{2}}{w} d x=-\int \frac{\tan x \sin x}{1} d x=-\int \frac{\sin x}{\cos x} \sin x d x \\
& =-\int \frac{\sin ^{2} x}{\cos x} d x=-\int \frac{\left(1-\cos ^{2} x\right)}{\cos x} d x=\int \frac{\cos ^{2} x-1}{\cos x} d x \\
& =\int(\cos x-\sec x) d x \\
& u_{1}=\sin x-\ln |\sec x+\tan x| \\
& u_{2}=\int \frac{g y_{1}}{\omega} d x=\int \frac{\tan x \cos x}{1} d x=\int \frac{\sin x}{\cos x} \cos x d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int \sin x d x \\
u_{2} & =-\cos x \\
y_{1} & =\cos x, y_{2}=\sin x, u_{1}=\sin x-\ln |\sec x+\tan x|, u_{2}=-\cos x \\
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =(\sin x-\ln |\sec x+\tan x|) \cos x+(-\cos x) \sin x \\
& =\sin x \cos x-\cos x \ln |\sec x+\tan x|-\cos x \sin x \\
y_{p} & =-\cos x \ln |\sec x+\tan x|
\end{aligned}
$$

The geneal solution, $y_{c}+y_{p}$, is

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x \ln |\sec x+\tan x|
$$

The ODE is $y^{\prime \prime}+y=\tan x$

Solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=8 x^{2}, \quad y(1)=1, \quad y^{\prime}(1)=1
$$

The complementary solution of the ODE is $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$.
well find y_{p} in the form $y_{p}=u_{1} y_{1}+u_{2} y_{2}$.
The ODE in standard form is

$$
\begin{aligned}
& y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{4}{x^{2}} y=8 \quad g(x)=8 \\
& y_{1}=x^{2} \quad y_{2}=x^{-2} \\
& w=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
x^{2} & x^{-2} \\
2 x & -2 x^{-3}
\end{array}\right|=x^{2}\left(-2 x^{-3}\right)-2 x\left(x^{-2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-2 x^{-1}-2 x^{-1}=-4 x^{-1} \\
y_{1} & =x^{2}, y_{2}=x^{-2}, g(x)=8, \quad w=-4 x^{-1} \\
u_{1} & =\int \frac{-g y_{2}}{w} d x=\int \frac{-8 x^{-2}}{-4 x^{-1}} d x=2 \int x^{-2} \cdot x d x \\
& =2 \int x^{-1} d x=2 \ln |x| \\
u_{2} & =\int \frac{g y_{1}}{w} d x=\int \frac{8 x^{2}}{-4 x^{-1}} d x=-2 \int x^{2} \cdot x d x \\
& =-2 \int x^{3} d x=\frac{-2}{} \quad \frac{x^{4}}{4}=-\frac{1}{2} x^{4} \\
y_{1} & =x^{2}, y_{2}=x^{-2}, u_{1}=2 \ln |x|, u_{2}=\frac{-1}{2} x^{4}
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =2 \ln |x|\left(x^{2}\right)+\left(\frac{-1}{2} x^{4}\right)\left(x^{-2}\right) \\
y_{p} & =2 x^{2} \ln x-\frac{1}{2} x^{2} \\
y & =y_{c}+y_{p} \\
& =c_{1} x^{2}+c_{2} x^{-2}+2 x^{2} \ln |x|-\frac{1}{2} x^{2}
\end{aligned}
$$

We ran out of time and didn't finish solving the IVP. This is the general solution to the ODE.

