October 14 Math 2306 sec. 53 Fall 2024

Section 10: Variation of Parameters

We are still considering nonhomogeneous, linear ODEs. Consider equations of the form

$$
y'' + y = \tan x
$$
, or $x^2y'' + xy' - 4y = e^x$.

Question: Can the method of undetermined coefficients be used to find a particular solution for either of these nonhomogeneous ODEs? (Why/why not?)

Variation of Parameters

$$
\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = g(x) \tag{1}
$$

For the equation [\(1\)](#page-1-0) in standard form suppose $\{y_1(x), y_2(x)\}\)$ is a fundamental solution set for the associated homogeneous equation. We seek a particular solution of the form

$$
y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)
$$

where u_1 and u_2 are functions we will determine (in terms of y_1 , y_2 and *g*). $y_c = C_1 y_1(x) + C_2 y_2(x)$, C_1, C_2 Constants

This method is called **variation of parameters**.

u, and we are like parameters that vary.

Variation of Parameters: Derivation of *y^p y*^{''} + *P*(*x*)*y*['] + *Q*(*x*)*y* = *g*(*x*) We need a Znd esuation Set $y_p = u_1(x)y_1(x) + u_2(x)y_2(x)$ introduce a 2nd egn.

$$
y_{p} = u_{1}y_{1} + u_{2}y_{2}
$$

\n $y_{p}^{\prime} = u_{1}y_{1}^{\prime} + u_{2}y_{2}^{\prime} + u_{1}^{\prime}y_{1} + u_{2}^{\prime}y_{2}$
\nAssume $u_{1}^{\prime}y_{1} + u_{2}^{\prime}y_{2} = 0$

Remember that $y''_i + P(x)y'_i + Q(x)y_i = 0$, for $i = 1, 2$

$$
y'' + P(x)y' + Q(x)y = g(x)
$$

$$
y_{f} = u_{1}y_{1} + u_{2}y_{2}
$$
\n
$$
y_{f}' = u_{1}y_{1}' + u_{2}y_{2}'
$$
\n
$$
y_{f}'' = u_{1}'y_{1}' + u_{2}'y_{2}' + u_{1}y_{1}' + u_{2}y_{2}'
$$
\n
$$
S_{th} \text{ into the } 00\frac{1}{5}
$$
\n
$$
u_{1}'y_{1}' + u_{2}'y_{2}' + u_{1}y_{1}'' + u_{2}y_{2}' + \frac{1}{5}u_{1}y_{1}' + u_{2}y_{2}' + \frac{1}{5}u_{1}y_{2}' + u_{2}y_{2}' + \frac{1}{5}u_{1}y_{2}' + u_{2}y_{2}' +
$$

This reduces to $u_1' y_1' + u_2' y_2' = 9$ together with $u_1^{\prime}y_1+u_2^{\prime}y_2=0$; ie houe the system $u_1^{\prime} y_1 + u_2^{\prime} y_2 = 0$ $u'_{1}y_{1} + u_{2}^{1}y_{2}^{1} = 0$ well solve this using Cranor's rule. In making for mat, this system is y_{max} y_{max}
 y_{max} y_{max}

Let
$$
W_i = \det \begin{bmatrix} 0 & y_2 \\ 0 & y_2 \end{bmatrix} = 0 - 0 = 0
$$

\n $U_2 = \frac{1}{2} \int \frac{y_1}{y_2} \cdot \frac{0}{y_1} = 0$

\n $U_3 = \frac{1}{2} \int \frac{y_1}{y_1} \cdot \frac{0}{y_2} \cdot \frac{0}{y_3} = 0$

\n $U_4 = \frac{1}{2} \int \frac{0}{y_1} \cdot \frac{0}{y_2} \cdot \frac{0}{y_3} = 0$

$$
u_1' = \frac{w_1}{w_2} = \frac{3w_1}{w_1}
$$

 $u_2' = \frac{w_2}{w_2} = \frac{3w_1}{w_2}$

Integrate to get u, and he, there

 $y_{e} = u_{1}y_{1} + u_{2}y_{2}$

Variation of Parameters

$$
y'' + P(x)y' + Q(x)y = g(x)
$$

If $\{y_1, y_2\}$ is a fundamental solution set for the associated homogeneous equation, then the general solution is

 $y = y_c + y_p$ where

 $y_c = c_1y_1(x) + c_2y_2(x)$, and $y_p = u_1(x)y_1(x) + u_2(x)y_2(x)$.

Letting *W* denote the Wronskian of y_1 and y_2 , the functions u_1 and u_2 are given by the formulas

$$
u_1=\int \frac{-y_2g}{W} dx, \text{ and } u_2=\int \frac{y_1g}{W} dx.
$$

Solve the IVP

$$
x2y'' + xy' - 4y = 8x2, y(1) = 0, y'(1) = 0
$$

The complementary solution of the ODE is $y_c = c_1 x^2 + c_2 x^{-2}$.

We need Up, well use Variation of parameters, $y_e = u_1 y_1 + u_2 y_2$ where $u_1 = \int \frac{-y_2 g}{W}$ $\frac{y_2 g}{W}$ *dx*, and $u_2 = \int \frac{y_1 g}{W}$ $\frac{dy}{dx}$ dx. From y_c , $y_i = x^2$ and $y_z = x^2$ In standard form, $y'' + \frac{1}{x}y' - \frac{y}{x^{2}}y = 8$,

$$
9^{(x)} = 8
$$
, $u = \begin{bmatrix} x^2 & x^2 \\ z & -2x \end{bmatrix} = x^2(-2x^3) - 2x(x^{-2})$

 $u_i = 2J_n x$, $u_2 = \frac{-1}{2}x^{4}$, $y_i = x^{2}$, $y_2 = x^{2}$

 y_{p} = u, y, + u, y, = $(2lnx)x^{2} - \frac{1}{2}x^{4}(x^{2})$

 $y_{p} = 2x^{2}lnx - \frac{1}{2}x^{2}$ $y_c = c_1x^2 + c_2x^{-2}$, so the general $Sshu$ $\frac{1}{2}x^{2} + C_{1}x^{2} + C_{2}x^{2} + 2x^{2}u^{2} + C_{2}x^{2}$ $|\hat{f}|$ we let $k_1 = C_1 - \frac{1}{2}$ and $k_2 = C_2$, we $\begin{array}{ccc} \text{can} & \text{write} & & -2 \\ & \text{y = k, } x^2 + k_2 x + 2x^2 J \end{array}$ $APP^{1}y$ $y(1) = 0$ and $y'(1) = 0$. $y' = 2k_1x - 2k_2x^3 + 4x \ln x + \frac{2x^2}{x}$

$$
y(1) = k_1(i^2) + k_2(i^3) + 2(i^2)ln 1 = 0
$$

$$
k_1 + k_2 = 0
$$

$$
y^1(1)=2k_1(1)-2k_2(1^3)+4(119k+2=0
$$

2k_1-2k_2=-2

$$
S_{0}|_{U}L_{1}+K_{2}=0
$$
\n
$$
2k_{1}+2k_{2}=0
$$
\n
$$
2k_{1}-2k_{2}=-2
$$
\n
$$
2k_{1}-2k_{2}=-2
$$
\n
$$
4k_{1}=-2
$$
\n
$$
k_{1}=-\frac{1}{2}
$$

Contractor

 $k_{2} = -k_{1} = \pm$

The solution to the IVP is $y = \frac{1}{2}x^{2} - \frac{1}{2}x^{2} + 2x^{2}lnx$

Two Notes:If we didn't collect like terms before applying the IC, we'd get the same result (we'd find $c_1=0$ and $c_2=1/2$). Also, when doing homework, if your answer is different from the back, but only because you have an added term(s) that is part of y_c , your answer is also correct.