October 15 Math 2306 sec. 52 Fall 2021

Section 13: The Laplace Transform

A quick word about functions of 2-variables:
Suppose $G(s, t)$ is a function of two independent variables (s and t) defined over some rectangle in the plane $a \leq t \leq b, c \leq s \leq d$. If we compute an integral with respect to one of these variables, say t,

$$
\int_{\alpha}^{\beta} G(s, t) d t
$$

- the result is a function of the remaining variable s, and
- the variable s is treated as a constant while integrating with respect to t.

For Example...
Assume that $s \neq 0$ and $b>0$. Compute the integral

$$
\begin{aligned}
& \int_{0}^{b} e^{-s t} d t \\
= & \left.\frac{1}{-s} e^{-s t}\right|_{0} ^{b} \\
= & \frac{-1}{s} e^{-s(b)}-\frac{-1}{s} e^{-s(0)} \\
= & -\frac{1}{s} e^{-b s}+\frac{1}{s}
\end{aligned}
$$

Integral Transform

An integral transform is a mapping that assigns to a function $f(t)$ another function $F(s)$ via an integral of the form

$$
\int_{a}^{b} K(s, t) f(t) d t
$$

- The function K is called the kernel of the transformation.
- The limits a and b may be finite or infinite.
- The integral may be improper so that convergence/divergence must be considered.
- This transform is linear in the sense that

$$
\int_{a}^{b} K(s, t)(\alpha f(t)+\beta g(t)) d t=\alpha \int_{a}^{b} K(s, t) f(t) d t+\beta \int_{a}^{b} K(s, t) g(t) d t .
$$

The Laplace Transform

Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

The domain of the transformation $F(s)$ is the set of all s such that the integral is convergent.

Note: The kernel for the Laplace transform is $K(s, t)=e^{-s t}$.

Limits at Infinity $e^{-s t}$
If $s>0$, evaluate

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} e^{-s t} \\
= & 0
\end{aligned}
$$

If $s<0$, evaluate

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} e^{-s t} \\
&=\infty
\end{aligned}
$$

$$
\text { If } s<0,-s t \rightarrow \infty
$$

$$
\text { as } t \rightarrow \infty
$$

Find the Laplace transform of $f(t)=1$
By definition

$$
\mathcal{L}\{1\}=\int_{0}^{\infty} e^{-s t} \cdot 1 d t
$$

well consider $s=0$ and $s \neq 0$. if $s=0$, the integral is

$$
\begin{aligned}
& \text { integral is } \\
& \int_{0}^{\infty} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} d t=\left.\lim _{b \rightarrow \infty} t\right|_{0} ^{b}=\lim _{b \rightarrow \infty}(b-0)=\infty
\end{aligned}
$$

This is divergent. So zero is not in the domain of $\mathscr{L}\{1\}$. For $s \neq 0$.

$$
\mathcal{L}\{1\}=\int_{0}^{\infty} e^{-s t} d t=\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} d t, \underset{\text { ocaboer 14, 2021 }}{ }=
$$

$$
\begin{aligned}
& =\lim _{b \rightarrow \infty}\left(\frac{-1}{s} e^{-b s}+\frac{1}{5}\right) \quad \begin{array}{l}
\text { Divengut } \\
\text { if } s<0
\end{array} \\
\text { for } & =\frac{-1}{s} \cdot 0+\frac{1}{s} \\
& =\frac{1}{s}
\end{aligned}
$$

Hence $\mathcal{L}\{1\}=\frac{1}{\$}$ with domain $s>0$.
for this example $f(t)=1$ and $F(s)=\frac{1}{5}$

Find the Laplace transform of $f(t)=t$
By definition $\mathcal{L}\{t\}=\int_{0}^{\infty} e^{-s t} t d t$
The integral diverges if $s=0$. For $s \neq 0$

$$
\begin{aligned}
& \mathcal{L}\{t\}=\int_{0}^{\infty} e^{-s t} t d t \\
& u=t \quad d u=d t \\
& v=\frac{-1}{s} e^{-s t} d v=e^{-s t} d t \\
& =\left.\frac{-1}{5} t e^{-s t}\right|_{0} ^{\infty}-\int_{0}^{\infty} \frac{-1}{5} e^{-s t} d t \\
& \text { * For } s>0 \\
& \lim _{t \rightarrow \infty} t e^{-s t}=0 \\
& \int_{s \rightarrow 0}^{f 0 r}=\frac{-1}{s}(0-0)+\frac{1}{s} \int_{0}^{\infty} e^{-s t} d t
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}\{t\} & =\frac{1}{S} \mathcal{L}[1\} \\
& =\frac{1}{S}\left(\frac{1}{5}\right) \\
& =\frac{1}{s^{2}}
\end{aligned}
$$

So $\mathscr{L}\{t\}=\frac{1}{s^{2}}$ with dimin $s>0$.
Input $f(t)=t$ outent $F(s)=\frac{1}{s^{2}}$

A piecewise defined function Find the Laplace transform of f defined by

$$
f(t)= \begin{cases}2 t, & 0 \leq t<10 \\ 0, & t \geq 10\end{cases}
$$

By definition

$$
\begin{aligned}
\mathscr{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{10} e^{-s t} f(t) d t+\int_{10}^{\infty} e^{-s t} f(t) d t \\
& =\int_{0}^{10} e^{-s t}(2 t) d t+\int_{10}^{\infty} e^{-s t}(0) d t \\
& =2 \int_{0}^{10} e^{-s t} t d t
\end{aligned}
$$

For $s=0$, the integrel is

$$
2 \int_{0}^{10} t d t=\left.t^{2}\right|_{0} ^{10}=100
$$

For $s \neq 0$

$$
\begin{aligned}
& 2 \int_{0}^{10} e^{-s t} t d t \\
= & 2\left[\left.\frac{-1}{s} t e^{-s t}\right|_{0} ^{10}-\left.\frac{1}{s^{2}} e^{-s t}\right|_{0} ^{10}\right. \\
= & 2\left[\frac{-10}{s} e^{-10 s}-0-\frac{1}{s^{2}}\left(e^{-10 s}-e^{0}\right)\right] \\
= & \frac{-20}{s} e^{-10 s}-\frac{2}{s^{2}} e^{-10 s}+\frac{2}{s^{2}}
\end{aligned}
$$

October 14, $2021 \quad 11 / 28$

$$
\begin{aligned}
& \mathscr{L}\{f(t)\}= \begin{cases}100, & s=0 \\
\frac{2}{s^{2}}-\frac{2}{s^{2}} e^{-10 s}-\frac{20}{s} e^{-10 s}, & s \neq 0\end{cases} \\
& \delta_{0}^{c} \quad f(t)=\left\{\begin{array}{cc}
2 t, & 0 \leq t<10 \\
0, & t \geqslant 10
\end{array}\right.
\end{aligned}
$$

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta g(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
$-\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

