October 15 Math 3260 sec. 53 Fall 2025

4.2 Subspaces of Rⁿ

A **subset** of R^n is just some collection of vectors in R^n . We can come up with tons of examples of subsets:

- ▶ $B = \{\vec{e}_1, \vec{e}_2\}$ in R^2 is a subset containing the two vectors $\langle 1, 0 \rangle$ and $\langle 0, 1 \rangle$.
- ▶ The set $W = \{\langle a, b, 0 \rangle \mid a, b \in R\}$ is the subset of R^3 of all vectors whose last entry is zero.
- ▶ The set $T = \{\langle k, n \rangle \mid k, n \in Z\}$ is the subset of R^2 of all vectors having integer entries.
- ▶ The set $P = \text{Span}\{\langle 1, 0, 1, 0 \rangle\}$ is the subset of R^4 of all scalar multiples of $\langle 1, 0, 1, 0 \rangle$.

4.2 Subspaces of Rⁿ

Not all subsets are created equal. Recall that we have two critical operations in \mathbb{R}^n :

- vector addition and
- scalar multiplication.

Subsets of \mathbb{R}^n that hold a special sort of importance in Linear Algebra are sets that in some sense preserve these two operations. Such sets are *similar* to \mathbb{R}^n in that we can do arithmetic (i.e., use these operations) with vectors in the set and still get vectors in the set.

A set is called **empty** if it doesn't actually contain anything. For example

Let M be the set of all nonzero vectors in \mathbb{R}^2 that are both parallel to and orthogonal to the vector (1,1).

M is the empty set, " $M = \emptyset$ ", because no vector satisfies the condition to be in it. Saying a set is **nonempty** just means that there is something in the set.

Definition: Subspace of R^n

A subset, S, of R^n is a **subspace** of R^n provided

- i. S is nonempty,
- ii. for any pair of vectors \vec{u} and \vec{v} in S, $\vec{u} + \vec{v}$ is in S, and
- iii. for any vector \vec{u} in S and scalar c in R, $c\vec{u}$ is in S.

A set that satisfies property

- ii. is said to be closed with respect to vector addition.
- iii. is said to be closed with respect to scalar multiplication.

The phrase "with respect to" can be repaced with the word "under".

Example: $V = \{ \langle a, b \rangle \mid a, b \in R \text{ and } ab \geq 0 \}$.

Which of the following vectors is in *V*?

$$\sqrt{1}$$
. $(2,3)$ a= 2, b=3 ab=6 $\sqrt{3}$ 0

$$(2, 6)$$
 $(4, -2)$ $(4, -2)$ $(4, -2)$ $(4, -2)$ $(4, -2)$ $(4, -2)$ $(4, -2)$ $(4, -2)$ $(4, -2)$

$$\sqrt{3}$$
. $\langle -5, -2 \rangle$ $a = -5$, $b = -2$ $ab = (0, 0)$

$$\times 6. \langle -6, 8 \rangle$$

In the standard, Cartesian coordinate system, a vector in V would have to have standard representation in which quadrant(s)? (I, II, III, or IV)

The roordinate axer are in V. V contains vectors in quadrants I and III.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

October 14, 2025

4/75

$$V = \{\langle a, b \rangle \mid a, b \in R \text{ and } ab \geq 0\}$$
.

Suppose $\langle a, b \rangle$ is in V. Is the scalar multiple $c\langle a, b \rangle$ in V is

1.
$$c > 0$$
? $c(a_1b) = (ca_1cb)$
 $(ca)(cb) = c^2ab > 0 \Rightarrow c(a_1b)$ is in \vee .

2.
$$c < 0$$
? $c(a,b) = (ca,cb)$
 $(ca)((b) = c^{2}ab > 0 \Rightarrow c(a,b) is in V.$

3.
$$c=0$$
? If $c=0$, $c(a,b)=(c,0)$ which is in V .

October 14, 2025

$$V = \{\langle a, b \rangle \mid a, b \in R \text{ and } ab \geq 0\}$$
.

The following vectors are all in V:

Which of the following sums are in V?

$$\vec{x}_1 + \vec{x}_2 = \langle 3, 47 \rangle \qquad \vec{x}_3 + \vec{x}_4 = \langle -1, -1 \rangle \qquad \vec{x}_5 + \vec{x}_6 = \langle -1, -2 \rangle \qquad \vec{x}_1 + \vec{x}_5 = \langle -3, 1 \rangle \qquad \vec{x}_2 + \vec{x}_4 = \langle -3, 1 \rangle \qquad \vec{x}_2 + \vec{x}_6 = \langle -3, 1 \rangle \qquad \vec{x}_2 + \vec{x}_6 = \langle -3, 1 \rangle \qquad \vec{x}_1 + \vec{x}_2 = \langle -3, 1 \rangle \qquad \vec{x}_2 + \vec{x}_3 = \langle -3, 1 \rangle \qquad \vec{x}_4 + \vec{x}_5 = \langle -3, 1 \rangle \qquad \vec{x}_5 + \vec{x}_6 = \langle -3, 1 \rangle \qquad \vec{$$

October 14, 2025

$$V = \{\langle a, b \rangle \mid a, b \in R \text{ and } ab \geq 0\}$$
.

1. Is V a nonempty subset of R^2 ?

2. Is *V* closed under scalar multiplication?

3. Is V closed under vector addition?

4. Is V a subspace of R^2 ?

No. V is not closed under vector addition.

 $V = \{\langle a, b \rangle \mid a, b \in R \text{ and } ab \geq 0\}.$

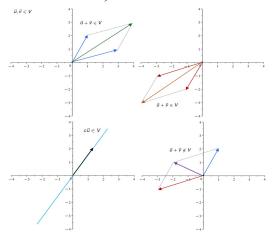


Figure: *V* is closed under scalar multiplication (lower left), but it is not closed under vector addition (lower right).

Example

Determine whether the following set is a subspace of R^3 .

$$W = \{\langle a, b, 0 \rangle \mid a, b \in R\}$$
.

Is W nonempty—i.e., are there any vectors in R^3 of the form $\langle a, b, 0 \rangle$ with a, b some real numbers?

October 14, 2025

$$W = \{\langle a, b, 0 \rangle \mid a, b \in R\}$$

Is W closed with respect to vector addition?

$$W = \{\langle a, b, 0 \rangle \mid a, b \in R\}$$

Is W closed with respect to scalar multiplication?

For
$$U = (a, b, o)$$
, let C be any scalar.

 $CU = (ca, cb, c(o)) = (ca, cb, o)$.

The third entry is zero, so CU is in W .

 W is closed under scalar multiplication.

 W is C subspace of \mathbb{R}^3 .

Observation

Note that for any vector $\vec{x} = \langle a, b, 0 \rangle$ in W,

$$\vec{x} = \langle a, b, 0 \rangle = a \langle 1, 0, 0 \rangle + b \langle 0, 1, 0 \rangle.$$

So

$$\vec{x} \in \mathsf{Span}\left\{\langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle\right\}.$$

Based on how **span** is defined, a set that is defined as a span is closed under both vector addition and scalar multiplication.

Theorem

If $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ is any nonempty subset of vectors in R^n , then the set Span(S) is a subspace of R^n .

Remark: If a set, say T = Span(S), is a span, we can call the set of vectors—S in this case—a "spanning set."

This gives us two ways to check whether a subset is a subspace or to verify that a subset is a subspace:

- 1. Use the definition (check that it is nonempty, closed under vector addition, and closed under scalar multiplication). OR
- 2. Determine whether the set can be written as a span—e.g., look for a spanning set.

Example

Show that the set G defined below is a subspace of R^4 by finding a spanning set.

$$\textit{G} = \{\langle \textit{a} + \textit{b}, \textit{a}, -\textit{b}, 3\textit{a} + 2\textit{b}\rangle \mid \textit{a}, \textit{b} \in \textit{R}\}$$

Let if be in G. We want to write it as a linear combination of fixed vectors with varioble coefficients

$$\vec{x} = (a+b, a, -b, 3a+zb)$$

= $(a,a,o,3a7 + (b,o,-b,zb7)$

= $a < 1,1,0,37 + b < 1,0,-1,27$

14/75

Since a, b can be any real number, $\forall \in Span \{(1,1,0,3), (1,0,-1,2)\}.$ $G = Span \{(1,1,0,3), (1,0,-1,2)\}.$ So G is a subspace of \mathbb{R}^4 .

4.2.1 Fundamental Subspaces of a Matrix

We will define four subspaces, two of R^m and two of R^n , associated with an $m \times n$ matrix. Collectively, we call these the **Fundamental Subspaces of a Matrix**.

Column Space

Let A be an $m \times n$ matrix. The subspace of R^m spanned by the column vectors of A, denoted

$$CS(A) = Span\{Col_1(A), \dots, Col_n(A)\},\$$

is called the **column space of** A.

Remark: We can say

" $\mathcal{CS}(A)$ is the set of all vectors $\vec{y} \in R^m$ such that $A\vec{x} = \vec{y}$ is consistent."

Row Space

Let A be an $m \times n$ matrix. The subspace of R^n spanned by the row vectors of A, denoted

$$\mathcal{RS}(A) = \mathsf{Span}\{\mathsf{Row}_1(A), \dots, \mathsf{Row}_m(A)\},$$

is called the row space of A.

Remark: There is a geometric interpretation of $\mathcal{RS}(A)$, but it will make more sense after we define another fundamental subspace.

$$Let A = \begin{bmatrix} 0 & 3 & 1 \\ 4 & 7 & 5 \\ -2 & -5 & -3 \\ 5 & -4 & 2 \end{bmatrix}$$

Let $A = \begin{bmatrix} 0 & 3 & 1 \\ 4 & 7 & 5 \\ -2 & -5 & -3 \\ 5 & 4 & 2 \end{bmatrix}$. Identify a spanning set for $\mathcal{RS}(A)$ and a

spanning set for CS(A).

The row space is the span of the row vectors form a spanning set.

€(0,3,1), (4,7,5), (-2,-8,-3), (5,-4,2)}

$$A = \begin{bmatrix} 0 & 3 & 1 \\ 4 & 7 & 5 \\ -2 & -5 & -3 \\ 5 & -4 & 2 \end{bmatrix}$$

A spenning set for CS(A) is the set of column vectors.