October 16 Math 2306 sec. 51 Spring 2023

Section 10: Variation of Parameters

Variation of Parameters

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

If $\left\{y_{1}, y_{2}\right\}$ is a fundamental solution set for the associated homogeneous equation, then the general solution is

$$
\begin{gathered}
y=y_{c}+y_{p} \text { where } \\
y_{c}=c_{1} y_{1}(x)+c_{2} y_{2}(x), \quad \text { and } y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) .
\end{gathered}
$$

Letting W denote the Wronskian of y_{1} and y_{2}, the functions u_{1} and u_{2} are given by the formulas

$$
u_{1}=\int \frac{-y_{2} g}{W} d x, \quad \text { and } \quad u_{2}=\int \frac{y_{1} g}{W} d x .
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=8 x^{2}, \quad y(1)=1, \quad y^{\prime}(1)=1
$$

The complementary solution of the ODE is $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$.
We found the particular solution using variation of parameters. With $y_{1}=x^{2}$ and $y_{2}=x^{-2}$, the Wronskian turned out to be $W=-4 x^{-1}$. Using $g(x)=8$, we got

$$
u_{1}=2 \ln (x), \quad \text { and } \quad u_{2}=-\frac{1}{2} x^{4}
$$

Since $y_{p}=u_{1} y_{1}+u_{2} y_{2}$, this gave us

$$
y_{p}=2 x^{2} \ln (x)-\frac{1}{2} x^{2}
$$

The general solution $y=y_{c}+y_{p}$

$$
y=c_{1} x^{2}+c_{2} x^{-2}+2 x^{2} \ln x-\frac{1}{2} x^{2}
$$

we can combine $c_{1} x^{2}-\frac{1}{2} x^{2}=k_{1} x^{2}$
where $k_{1}=c_{1}-\frac{1}{2}$
we con take $y=k_{1} x^{2}+k_{2} x^{-2}+2 x^{2} \ln x$

$$
w_{2}=c_{2}
$$

Apply $y(1)=1$ and $y^{\prime}(1)=1$

$$
\begin{gathered}
y^{\prime}=2 k_{1} x-2 k_{2} x^{-3}+4 x \ln x+2 x^{-}\left(\frac{1}{x}\right) \\
y(1)=k_{1}(1)^{2}+k_{2}(1)^{-2}+2(1)^{2} \ln 1=1 \\
k_{1}+k_{2}=1 \\
y^{\prime}(1)=2 k_{1}(1)-2 k_{2}(1)^{-3}+4(1) \ln 1+2(1)=1 \\
2 k_{1}-2 k_{2}+2=1 \\
2 k_{1}-2 k_{2}=-1
\end{gathered}
$$

Sote $\quad k_{1}+k_{2}=1 \quad \Rightarrow \quad 2 k_{1}+2 k_{2}=2$

$$
\text { subtroct } 4 k_{2}=3 \quad k_{2}=\frac{3}{4}
$$

The solution to the IVP is

$$
y=\frac{1}{4} x^{2}+\frac{3}{4} x^{-2}+2 x^{2} \ln x
$$

Method of Undetermined Coefficients (MUC) -vs- Variation of Parameters (WoP)
Determine which methods) could be used to find a particular solution for each ODE.
(a) $y^{\prime \prime}+9 y=\sec ^{2}(3 x) \quad V_{0} \rho$ meet be used due to the secant on the right side.
(b) $y^{\prime \prime}+9 y=x^{2} \cos (3 x)$ Vop or MUC con be Used.
(c) $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x} \quad$ Vop due to x^{-1} factor on the riant
(d) $y^{\prime \prime}-2 y^{\prime}+y=x e^{x} \quad M \cup C$ or $V \circ P$

Find a Particular Solution

$$
\begin{gathered}
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{x} \\
y_{1}=e^{x} \quad y_{2}=x e^{x} \quad y_{c}=c_{1} e^{x}+c_{2} x e^{x} \\
W=e^{2 x} \quad u_{1}=-x \quad u_{2}=\ln |x| \\
y_{p}=-x e^{x}+x e^{x} \ln |x| \\
\left|s \quad y_{p}=x e^{x} \ln \right| x \mid \quad \text { correct? }
\end{gathered}
$$

The genera solution

$$
y=c_{1} e^{x}+c_{2} x e^{x}+x e^{x} \ln |x|
$$

or

$$
y=c_{1} e^{x}+c_{2} x e^{x}-x e^{x}+x e^{x} \ln |x|
$$

Section 11: Linear Mechanical Equations

Simple Harmonic Motion

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in free, undamped motion-a.k.a. simple harmonic motion.

Building an Equation: Hooke's Law

At equilibrium, displacement $\mathrm{x}(\mathrm{t})=0$.

Hooke's Law: $\mathrm{F}_{\text {spring }}=k \mathrm{x}$
Figure: In the absence of any displacement, the system is at equilibrium. Displacement $x(t)$ is measured from equilibrium $x=0$.

Building an Equation: Hooke's Law
Newton's Second Law: $F=$ ma (mass times acceleration)

$$
a=\frac{d^{2} x}{d t^{2}} \quad \Longrightarrow \quad F=m \frac{d^{2} x}{d t^{2}}
$$

Hooke's Law: $F=k x$ (proportional to displacement)

$$
\begin{aligned}
& m \frac{d^{2} x}{d t^{2}}=-k x \Rightarrow \\
& m \frac{d^{2} x}{d t^{2}}+k x=0 \quad \Rightarrow \quad \frac{d^{2} x}{d t^{2}}+\frac{k}{m} x=0
\end{aligned}
$$

Let $\omega^{2}=\frac{k}{m}$, we set a $z^{n d}$ ode linear constant colt. ODE

$$
x^{\prime \prime}+\omega^{2} x=0
$$

Displacment in Equilibrium

Figure: Spring only, versus spring-mass equilibrium, and spring-mass (nonzero) displacement

Obtaining the Spring Constant (US Customary Units)

If an object with weight W pounds stretches a spring δx feet in equilibrium, then by Hooke's law we compute the spring constant via the equation

$$
W=k \delta x
$$

The units for k in this system of measure are lb/ft.

$$
k=\frac{w b}{\delta \times f t} \quad k \sim \frac{1 b}{f t}
$$

Obtaining the Mass (US Customary Units)

Note also that Weight $=$ mass \times acceleration due to gravity. Hence if we know the weight of an object, we can obtain the mass via

$$
W=m g
$$

We typically take the approximation $g=32 \mathrm{ft} / \mathrm{sec}^{2}$. The units for mass are lb sec${ }^{2} / \mathrm{ft}$ which are called slugs.

$$
m=\frac{W}{g} \text { slugs }
$$

Spring Constant and Mass (SI Units)

In SI units,

- Weight (force) would be in Newtons (N),
- Length would be in meters (m),
- Spring constant would be in N / m
- Mass would be in kilograms (kg)

It is customary to describe an object by its mass in kilograms. When we encounter such a description, we deduce the weight in Newtons
$W=m g$ taking the approximation $g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$.

