October 16 Math 2306 sec. 52 Spring 2023

Section 10: Variation of Parameters

Variation of Parameters

$$y'' + P(x)y' + Q(x)y = g(x)$$

If $\{y_1, y_2\}$ is a fundamental solution set for the associated homogeneous equation, then the general solution is

$$y = y_c + y_p$$
 where

$$y_c = c_1 y_1(x) + c_2 y_2(x)$$
, and $y_p = u_1(x) y_1(x) + u_2(x) y_2(x)$.

Letting W denote the Wronskian of y_1 and y_2 , the functions u_1 and u_2 are given by the formulas

$$u_1 = \int \frac{-y_2 g}{W} dx$$
, and $u_2 = \int \frac{y_1 g}{W} dx$.

Solve the IVP

$$x^2y'' + xy' - 4y = 8x^2$$
, $y(1) = 1$, $y'(1) = 1$

The complementary solution of the ODE is $y_c = c_1 x^2 + c_2 x^{-2}$.

We found the particular solution using variation of parameters. With $y_1 = x^2$ and $y_2 = x^{-2}$, the Wronskian turned out to be $W = -4x^{-1}$. Using g(x) = 8, we got

$$u_1 = 2 \ln(x)$$
, and $u_2 = -\frac{1}{2}x^4$.

Since $y_p = u_1y_1 + u_2y_2$, this gave us

$$y_p = 2x^2 \ln(x) - \frac{1}{2}x^2.$$

Letting
$$k_z = C_z$$
, we can write
$$y = k_1 x^2 + k_2 x^2 + 2x^2 \ln x$$

Apply
$$y(1)=1$$
, $y'(1)=1$
 $y'=2k_1x-2k_2x^{-3}+4x0nx+2x^{2}(\frac{1}{x})$
 $y(1)=k_1(1)^{2}+k_2(1)^{2}+2(1)^{2}D_1L=1$
 $k_1+k_2=1$

$$y'(1) = 2k, (1) - 2k_2(1)^3 + 4(1) ln 1 + 2(1) = 1$$

$$2k_1 - 2k_2 + 2 = 1$$

$$2k_1 - 2k_2 = -1$$

Solve
$$k_1 + k_2 = 1$$

$$2k_1 - 2k_2 = -1$$

$$3dd \qquad \forall k_1 = 1 \implies k_1 = 4$$

$$5ubtract \qquad \forall k_2 = 3 \implies k_2 = \frac{3}{4}$$

$$y = \frac{1}{4}x^2 + \frac{3}{4}x^2 + 2x^2 \ln x$$

Method of Undetermined Coefficients (MUC) -vs- Variation of Parameters (VoP)

Determine which method(s) could be used to find a particular solution for each ODE.

(a)
$$y''+9y=\sec^2(3x)$$
 VoP is the only aption due to the secont on the right side.

(b)
$$y''+9y=x^2\cos(3x)$$
 Muc will work, so will vop

(c)
$$y''-2y'+y=\frac{e^x}{x}$$
 Volt is the only option due to the x^{-1} factor

(d)
$$y''-2y'+y=xe^x$$
 Both nethods can be used

Find a Particular Solution

$$y'' - 2y' + y = \frac{e^x}{x}$$

$$y_1 = e^x, \quad y_2 = xe^x, \quad W = e^x$$

$$u_1 = -x, \quad u_2 = \int_{\mathbb{N}} x$$

$$y_1 = u_1 y_1 + u_2 y_2$$

$$y_2 = -xe^x + xe^x + xe^x + xe^x = xe^x$$
Question: Is $y_1 = xe^x + xe^x = xe^x + xe^x = xe^x$

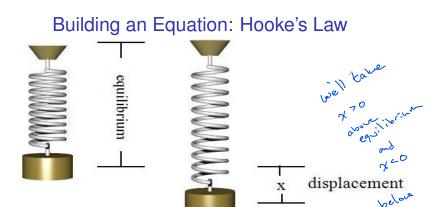
It is since -xè could be combined ul cixè for ye.

Section 11: Linear Mechanical Equations

Simple Harmonic Motion

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in **free**, **undamped motion**—a.k.a. **simple harmonic motion**.

► Harmonic Motion gif



At equilibrium, displacement x(t) = 0.

Hooke's Law: $F_{\text{spring}} = k x$

Figure: In the absence of any displacement, the system is at equilibrium. Displacement x(t) is measured from equilibrium x = 0.

Building an Equation: Hooke's Law

Newton's Second Law: F = ma (mass times acceleration)

$$a = \frac{d^2x}{dt^2} \implies F = m\frac{d^2x}{dt^2}$$

Hooke's Law: F = kx (proportional to displacement)

$$m\frac{d^{2}x}{dt^{2}}=-kx \Rightarrow m\frac{d^{2}x}{dt^{2}}+kx=0$$

$$\frac{d^2x}{dt^2} + \frac{k}{m} \times = 0 \quad \text{let} \quad \omega^2 = \frac{k}{m}$$

ODF w/

Displacment in Equilibrium

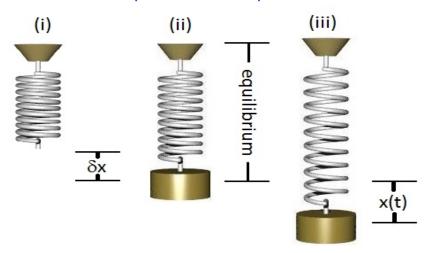


Figure: Spring only, versus spring-mass equilibrium, and spring-mass (nonzero) displacement

Obtaining the Spring Constant (US Customary Units)

If an object with weight W pounds stretches a spring δx feet in equilibrium, then by Hooke's law we compute the spring constant via the equation

$$W = k \delta x$$
.

The units for k in this system of measure are lb/ft.

Obtaining the Mass (US Customary Units)

Note also that Weight = mass \times acceleration due to gravity. Hence if we know the weight of an object, we can obtain the mass via

$$W = mg$$
.

We typically take the approximation $g=32 \text{ ft/sec}^2$. The units for mass are lb sec²/ft which are called slugs.

Spring Constant and Mass (SI Units)

In SI units,

- Weight (force) would be in Newtons (N),
- Length would be in meters (m),
- Spring constant would be in N/m
- Mass would be in kilograms (kg)

It is customary to describe an object by its mass in kilograms. When we encounter such a description, we deduce the weight in Newtons

W = mg taking the approximation $g = 9.8 \,\mathrm{m/sec^2}$.

14/48