October 17 Math 3260 sec. 51 Fall 2025

4.2.1 Fundamental Subspaces of a Matrix

We defined a subspace of R^n as a nonempty subset of R^n that is

- closed with respect to vector addition, and
- closed with respect to scalar multiplication.

Theorem

If S is a subspace of R^n , then $\vec{0}_n$ is an element of S.

Remark 1: This does mean that a set that does not contain $\vec{0}_n$ cannot be a subspace of \mathbb{R}^n .

Remark 2: Careful! A set can contain $\vec{0}_n$ and still fail to be a subspace. (Consider the example V from class last time.)

Column & Row Spaces of a Matrix

Column Space

Let A be an $m \times n$ matrix. The subspace of R^m spanned by the column vectors of A, denoted

$$CS(A) = Span\{Col_1(A), \dots, Col_n(A)\},\$$

is called the **column space of** A.

Row Space

Let A be an $m \times n$ matrix. The subspace of \mathbb{R}^n spanned by the row vectors of A, denoted

$$\mathcal{RS}(A) = \operatorname{Span}\{\operatorname{Row}_1(A), \dots, \operatorname{Row}_m(A)\},\$$

is called the row space of A.

Example

Characterize the column and row spaces of the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

$$RS(A) = Spen \{(1,17,(0,0)).$$

$$= Spen \{(1,17)\}$$

$$RS(A) = Spen \{(1,17)\}$$

This would be the vectors whose standard reps live on the 45 degree line.

October 16, 2025

3/59

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$CS(A) = Spin \{(1,0), (1,0)\}$$

$$= Spin \{(1,0)\}$$

$$\chi$$
 is in CS(A) if $\chi = \alpha < 1,07 = \langle \alpha, 07.$

This would be all of the vectors whose standard reps live on the horizontal axis.

October 16, 2025 4/59

$$CS(A) \& RS(A) \text{ of } A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

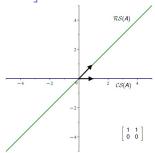


Figure: The row and column spaces of this matrix A are the lines $x_2 = x_1$ and $x_2 = 0$, respectively.

Word of Caution: This is just one example; don't read too much into it. Row and Columns Spaces are not always "lines." In fact, if $A\vec{x} = \vec{y}$ is always consistent, $\mathcal{CS}(A)$ would be all of R^m .