October 17 Math 3260 sec. 53 Fall 2025

4.2.1 Fundamental Subspaces of a Matrix

We defined a subspace of \mathbb{R}^n as a nonempty subset of \mathbb{R}^n that is

- closed with respect to vector addition, and
- closed with respect to scalar multiplication.

Theorem

If S is a subspace of R^n , then $\vec{0}_n$ is an element of S.

Remark 1: This does mean that a set that does not contain $\vec{0}_n$ cannot be a subspace of \mathbb{R}^n .

Remark 2: Careful! A set can contain $\vec{0}_n$ and still fail to be a subspace. (Consider the example V from class last time.)

Column & Row Spaces of a Matrix

Column Space

Let *A* be an $m \times n$ matrix. The subspace of R^m spanned by the column vectors of *A*, denoted

$$CS(A) = Span\{Col_1(A), \dots, Col_n(A)\},\$$

is called the **column space of** A.

Row Space

Let A be an $m \times n$ matrix. The subspace of \mathbb{R}^n spanned by the row vectors of A, denoted

$$\mathcal{RS}(A) = \operatorname{Span}\{\operatorname{Row}_1(A), \dots, \operatorname{Row}_m(A)\},\$$

is called the row space of A.

Characterize the column and row spaces of the matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

$$ZS(A) = Spen \{(1,17), (0,07)\}$$

$$= Spen \{(1$$

This is all the 2-tuples with both entries the same number.

October 16, 2025

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

$$CS(A) = Spon & \{21,07, 21,07\}.$$

$$= Spon & \{21,07\}.$$

$$IP & is in CS(A), then
$$\vec{y} = a(1,07) = \{a,07\}.$$$$

This is all 2-tuples with second entry zero.

October 16, 2025

$$CS(A) \& RS(A) \text{ of } A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

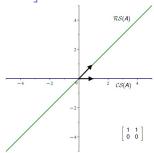


Figure: The row and column spaces of this matrix A are the lines $x_2 = x_1$ and $x_2 = 0$, respectively.

Word of Caution: This is just one example; don't read too much into it. Row and Columns Spaces are not always "lines." In fact, if $A\vec{x} = \vec{y}$ is always consistent, $\mathcal{CS}(A)$ would be all of R^m .

A Third Fundamental Subspace

Definition: Null Space

Let A be an $m \times n$ matrix. The **null space** of A, denoted $\mathcal{N}(A)$, is the set of all solutions of the homogeneous equation $A\vec{x} = \vec{0}_m$. That is,

$$\mathcal{N}(A) = \{ \vec{x} \in R^n \, | \, A\vec{x} = \vec{0}_m \}.$$

- For $m \times n$ matrix A, the product $A\vec{x}$ is only defined if \vec{x} is in R^n .
- The null space contains all solutions of the homogeneous equation $A\vec{x} = \vec{0}_m$.
- ▶ To say that $\vec{u} \in \mathcal{N}(A)$ means that $A\vec{u} = \vec{0}_m$.

 $\mathcal{N}(A) = \{ \vec{x} \in R^n \mid A\vec{x} = \vec{0}_m \}$ is the null space of $m \times n$ matrix A.

Theorem

Let *A* be an $m \times n$ matrix. Then $\mathcal{N}(A)$ is a subspace of R^n .

Proof: Let A be an $m \times n$ matrix. We have to show that (1) $\mathcal{N}(A)$ is not empty, (2) $\mathcal{N}(A)$ is closed under vector addition, and (3) $\mathcal{N}(A)$ is closed under scalar multiplication.

Since AX = Om always admits the trivial solution, X = On, On is in $\mathcal{N}(A)$ making $\mathcal{N}(A)$ non-empty. To show that $\mathcal{N}(A)$ is closed under both operations let it and X = On be in $\mathcal{N}(A)$. Then

Att= On and AV = On. Note that A (12+2) = A 2 + A 2 = Om + Om = On -S. Lity is in N(A), Let C be any scalar. Note that A(cù) = c Aù = c On = On N(A) is closed under vector addition and scaler multiplication. N(A) is a subspace of R.

Find a spanning set for $\mathcal{N}(A)$ where $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

Lee need to solve
$$A\vec{x} = \vec{O}_z$$
.
Set up $[A | \vec{O}_z] = \begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$ racf $\begin{bmatrix} 1 & 1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$
If $\vec{x} = (x, x_1)$ then $x_1 = -x_2$.
So $\vec{x} = (-x_2, x_2) = x_2 (-1, 1)$.
 $N(A) = Seen \{(1, 1)\}$.

October 16, 2025

Find a spanning set for
$$\mathcal{N}(A^T)$$
 where $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

$$A^{T} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad A^{T} \vec{x} = \vec{O}_{z}.$$

$$\begin{bmatrix} A^{T} & | \vec{O}_{z} \vec{O} | = \begin{bmatrix} 1 & 0 & | & 0 \\ 1 & 0 & | & 0 \end{bmatrix} \xrightarrow{\text{cref}} \quad \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$

$$If \quad \vec{x} = \langle x_{1}, x_{2} \rangle \quad \text{then} \quad \vec{x}_{1} = 0, \quad \vec{x}_{2} \text{ is free}$$

$$\vec{x} = \langle 0, \vec{x}_{2} \rangle = \vec{x}_{2} \langle 0, \vec{1} \rangle$$

Interpreting the Fundamental Subspaces

We already have an interpretation of the column space and the null space. For $m \times n$ matrix A

- ▶ CS(A) is all $\vec{y} \in R^m$ such that $A\vec{x} = \vec{y}$ is consistent, and
- $ightharpoonup \mathcal{N}(A)$ is all $\vec{x} \in R^n$ such that $A\vec{x} = \vec{0}_m$.

Question:

How can we interpret the row space?

Since the row space and the null space are both subspaces of \mathbb{R}^n , we can ask how they are related. Let's remember that the product

$$A\vec{x} = \langle \mathsf{Row}_1(A) \cdot \vec{x}, \mathsf{Row}_2(A) \cdot \vec{x}, \dots, \mathsf{Row}_m(A) \cdot \vec{x} \rangle$$

Question from Exam 1

Let \vec{u} and \vec{v} be two vectors in R^n . Suppose \vec{x} is a vector in R^n such that \vec{x} is orthogonal to \vec{u} and \vec{x} is orthogonal to \vec{v} . Show that \vec{x} is orthogonal to every vector in $\text{Span}\{\vec{u}, \vec{v}\}$.

This result generalizes. That is, if

$$\vec{x} \cdot \vec{v}_1 = 0$$
, and $\vec{x} \cdot \vec{v}_2 = 0$, and $\vec{x} \cdot \vec{v}_3 = 0$, ..., and $\vec{x} \cdot \vec{v}_m = 0$ then

$$\vec{x} \cdot \vec{z} = 0$$

for every vector \vec{z} in $Span\{\vec{v}_1,\ldots,\vec{v}_m\}$.

The Row Space

Suppose $\vec{x} \in \mathcal{N}(A)$ for some $m \times n$ matrix A. Then $A\vec{x} = \vec{0}_m$ which means that

$$Row_1(A) \cdot \vec{x} = 0$$

$$Row_2(A) \cdot \vec{x} = 0$$

$$\vdots \quad \vdots \quad \vdots$$

$$Row_m(A) \cdot \vec{x} = 0$$

That is, a vector $\vec{x} \in \mathcal{N}(A)$ is orthogonal to every row vector of A. Since that means that \vec{x} is orthogonal to every linear combination of the row vectors of A, we can say

Every vector in $\mathcal{RS}(A)$ is orthogonal to every vector in $\mathcal{N}(A)$ and vice versa.

Orthogonal Complements

Let W be a subspace of R^n . The **orthogonal complement** of W, denoted W^{\perp} , is the set of all \vec{x} in R^n that are orthogonal to all vectors in W. We can write

$$W^{\perp} = \left\{ \vec{x} \in R^n \mid \vec{x} \cdot \vec{w} = 0, \text{ for all } \vec{w} \in W \right\}.$$

The symbol W^{\perp} is read "W perp."

$\mathcal{RS}(A)$ & $\mathcal{N}(A)$

For $m \times n$ matrix A, the row space of A is the orthogonal complement of the null space of A.

$$\mathcal{RS}(A) = \mathcal{N}(A)^{\perp}$$
 and $\mathcal{N}(A) = \mathcal{RS}(A)^{\perp}$.

$$\mathcal{RS}(A) \& \mathcal{N}(A) \text{ of } A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

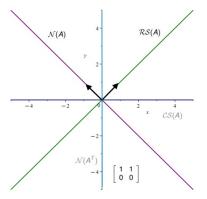


Figure: The row and null spaces of this matrix A are the lines $x_2 = x_1$ and $x_2 = -x_1$, respectively. In this case, they are actually perpendicular lines.

Orthogonal Complements in R³

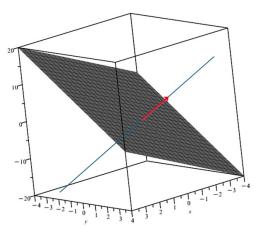


Figure: A subspace of \mathbb{R}^3 that corresponds to a plane together with its orthogonal complement corresponding to a line.

The Fourth Fundamental Subspace

The fourth fundamental subspace of a matrix A is the null space of A^T , i.e., $\mathcal{N}(A^T)$. Recall that for a matrix A,

$$Col_i(A) = Row_i(A^T)$$
 and $Row_i(A) = Col_i(A^T)$.

So this fourth subspace is the orthogonal complement of CS(A).

$\mathcal{N}(A^T)$

For $m \times n$ matrix A

$$\mathcal{N}(A^T) = \left\{ \vec{x} \in R^m \mid A^T \vec{x} = \vec{0}_n \right\}.$$

Equivalently

$$\mathcal{N}(A^T) = \{ \vec{x} \in R^m | \vec{x} \cdot \vec{y} = 0, \text{ for every } \vec{y} \in \mathcal{CS}(A) \}.$$

$$CS(A) \& \mathcal{N}(A^T) \text{ of } A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

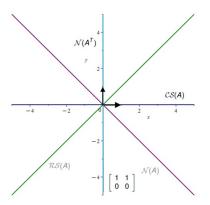


Figure: The column space of A and null space of A^T are the lines $x_2 = 0$ and $x_1 = 0$, respectively. These are also perpendicular line.

Find a spanning set for each of the four fundamental subspaces of the matrix

Patrix
$$A = \begin{bmatrix} 1 & -2 & 5 & 4 \\ 2 & -4 & 1 & -1 \end{bmatrix}.$$

For N(A) And ref (A)

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & -7 & 0 & -1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \quad \text{for } A \overrightarrow{\times} = \overrightarrow{0}_{2}$$

$$\chi: \langle x, x_1, x_2, x_3, x_n \rangle$$
 $\chi: 2 \times 2 + \times 4$
 $\chi_3 = \cdot \times 4$
 $\chi_2, \chi_3 = \alpha \times 4$

$$\vec{X} = (2X_2 + X_1, X_2, -X_4, X_4)$$
= $X_2(Z, 1, 0, 0) + X_4(1, 0, -1, 1)$
 $N(A) = Spac((Z_3, 1, 0, 0), (1, 0, -1, 1))$
 $N(AT), we need ref(AT)$
 $ref(AT) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$
 $A^T \vec{X} = \vec{0}_4$
 $\vec{X} = \vec{0}_2$