October 18 Math 2306 sec. 52 Spring 2023

Section 11: Linear Mechanical Equations

We were considering the displacement from equilibrium, $x(t)$, of an object of mass m suspended from a flexible spring with spring constant k. In the absence of any sort of damping or external forces, the object exhibits simple harmonic motion.

The displacement is subject to the second order, linear, homogeneous differential equation

$$
m x^{\prime \prime}+k x=0 \quad \text { i.e., } \quad x^{\prime \prime}+\omega^{2} x=0
$$

where the parameter

$$
\omega^{2}=\frac{k}{m}
$$

Equilibrium \& Displacment in Equilibrium

Figure: Hooke's law states that the displacement in equilibrium, δx, is related to the object's weight, W, via $W=k \delta x$. We'll use the convention
$x>0$ above equilibrium, and $x<0$ below equilibrium.

Basic Units (US Customary)

In US Customary units,

- Force (including weight) would be in pounds (lb),
- Length would be in feet (ft),
- Spring constant would be in lb/ft
- Mass would be in slugs
- Time would be in seconds (sec)

Unless stated otherwise, we'll take the gravitational acceleration constant to be $g=32 \mathrm{ft} / \mathrm{sec}^{2}$. Weight (mg) is generally used as a proxy for mass, so the mass must be computed when needed.

$$
m=\frac{W}{g}
$$

Basic Unit (SI Units)

In SI units,

- Force (including weight) would be in Newtons (N),
- Length would be in meters (m),
- Spring constant would be in N / m
- Mass would be in kilograms (kg)
- Time would be in seconds (sec)

It is customary to describe an object by its mass in kilograms. When we encounter such a description, we deduce the weight in Newtons
$W=m g$ taking the approximation $\quad g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$.

The Circular Frequency ω

Applying Hooke's law with the weight as force, we have

$$
\text { Weight } \quad m g=k \delta x \Rightarrow \frac{m g}{m \delta x}=\frac{k \delta x}{m \delta x}
$$

We observe that the value ω can be deduced from δx by

$$
\omega^{2}=\frac{k}{m}=\frac{g}{\delta x}
$$

Provided that values for δx and g are used in appropriate units, ω is in units of per second.

Simple Harmonic Motion

$$
\begin{equation*}
x^{\prime \prime}+\omega^{2} x=0, \quad x(0)=x_{0}, \quad x^{\prime}(0)=x_{1} \tag{1}
\end{equation*}
$$

Here, x_{0} and x_{1} are the initial position (relative to equilibrium) and velocity, respectively. The solution is

$$
\begin{equation*}
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t) \tag{2}
\end{equation*}
$$

called the equation of motion.
Caution: The phrase equation of motion is used differently by different authors.

Some use this phrase to refer the IVP (1). Others use it to refer to the solution to the IVP such as (2).

Simple Harmonic Motion

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)
$$

Characteristics of the system include

- the period $T=\frac{2 \pi}{\omega}$,
- the frequency $f=\frac{1}{T}=\frac{\omega}{2 \pi}^{1}$
- the circular (or angular) frequency ω, and
- the amplitude or maximum displacement $A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}$
${ }^{1}$ Various authors call f the natural frequency and others use this term for ω. $\overline{\underline{\bar{s}}}$

Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \sin (\omega t+\phi)
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and the phase shift ϕ must be defined by

$$
\sin \phi=\frac{x_{0}}{A}, \quad \text { with } \quad \cos \phi=\frac{x_{1}}{\omega A} .
$$

Amplitude and Phase Shift (alternative definition)

We can formulate the solution in terms of a single sine (or cosine) function. Letting

$$
x(t)=x_{0} \cos (\omega t)+\frac{x_{1}}{\omega} \sin (\omega t)=A \cos (\omega t-\hat{\phi})
$$

requires

$$
A=\sqrt{x_{0}^{2}+\left(x_{1} / \omega\right)^{2}}
$$

and this phase shift $\hat{\phi}$ must be defined by

$$
\begin{aligned}
& \cos \hat{\phi}=\frac{x_{0}}{A}, \text { with } \sin \hat{\phi}=\frac{x_{1}}{\omega A} . \\
& \phi+\hat{\phi}=\frac{\pi}{2}+2 \pi n \quad \text { for integer } n
\end{aligned}
$$

Example
An object stretches a spring 6 inches in equilibrium. Assuming no driving force and no damping, set up the differential equation describing this system.

No driving and no damping \Rightarrow simple harnonic motion The ODE should look like $m x^{\prime \prime}+k x=0$

$$
\Rightarrow \quad x^{\prime \prime}+\omega^{2} x=0 .
$$

we need to identify ω^{2}.

$$
\omega^{2}=\frac{k}{m} \text { and } \omega^{2}=\frac{g}{\delta x}
$$

The displacement in equilibrium $\delta x=6 \mathrm{in}$.

Since were using US units, well take

$$
\begin{aligned}
g & =32 \frac{\mathrm{ft}}{\mathrm{sec}^{2}} \\
\delta x & =\frac{1}{2} \mathrm{ft} \text {, so } \omega^{2}=\frac{32 \frac{\mathrm{ft}}{\sec ^{2}}}{\frac{1}{2} \mathrm{ft}}=64 \frac{1}{\mathrm{sec}^{2}}
\end{aligned}
$$

The displacement sati fies

$$
x^{\prime \prime}+64 x=0
$$

Example
A 4 pound weight stretches a spring 6 inches. The mass is released from a position 4 feet above equilibrium with an initial downward velocity of $24 \mathrm{ft} / \mathrm{sec}$. Find the equation of motion, the period, amplitude, phase shift, and frequency of the motion. (Take $g=32 \mathrm{ft} / \mathrm{sec}^{2}$.)
we have enough information to $f i n d ~ m$ and l. Since $\delta x=\frac{1}{2} \mathrm{ft}$, we know that ω^{2} should be 64 .

The weight $W=4 \mathrm{lb}$. To get the mass

$$
W=m g \Rightarrow m=\frac{W}{g}=\frac{416}{32 \frac{4+7}{\sec ^{2}}}=\frac{1}{8} \frac{1 b \sec ^{2}}{f t}
$$

The spring constant satisfies

$$
W=k \delta x \Rightarrow k=\frac{w}{\delta x}=\frac{4 l b}{\frac{1}{2} f t}=8 \frac{b}{f t}
$$

$$
\omega^{2}=\frac{k}{m}=\frac{8 \frac{1 b}{f t}}{\frac{1}{8} \frac{1 b \sec ^{2}}{f t}}=64 \frac{1}{\sec ^{2}}
$$

The ODE is $x^{\prime \prime}+64 x=0$. The initial conditions are

$$
\begin{aligned}
& x(0)=4 \\
& x^{\prime}(\theta)=-24 \quad \text { ufa above equationime } \\
&
\end{aligned}
$$

Using the parameter r (instead of " n "), the characteristic equation is

$$
r^{2}+64=0 \Rightarrow r^{2}=-64, r= \pm 8 i
$$

$$
x_{1}=\cos (8 t), x_{2}=\sin (8 t)
$$

The displacement

$$
x(t)=c_{1} \cos (8 t)+c_{2} \sin (8 t)
$$

Apply $x(0)=4, \quad x^{\prime}(0)=-24$

$$
\begin{gathered}
x^{\prime}(t)=-8 c_{1} \sin (8 t)+8 c_{2} \cos (8 t) \\
x(0)=c_{1}=4 \quad x^{\prime}(0)=8 c_{2}=-24 \Rightarrow c_{2}=\frac{-24}{8}=-3
\end{gathered}
$$

The displacement for all $t>0$ is

$$
x(t)=4 \cos (8 t)-3 \sin (8 t)
$$

The period $T=\frac{2 \pi}{\omega}=\frac{2 \pi}{8}=\frac{\pi}{4}$ seconds
Linear frequency $f=\frac{1}{T}=\frac{4}{T}$ cycles $/ \mathrm{sec}$
Amplitude $A=\sqrt{4^{2}+(-3)^{2}}=5$

If $x(t)=5 \sin (8 t+\phi)$ then

$$
\begin{array}{r}
\sin \phi=\frac{x_{0}}{A}=\frac{4}{5} \quad \cos \phi=\frac{x_{1}}{w A}=\frac{-3}{5} \\
\phi=\operatorname{c-s}^{-1}\left(\frac{-3}{5}\right) \approx 2.21 \quad \text { that's about } \\
127^{\circ}
\end{array}
$$

