October 18 Math 2306 sec. 54 Fall 2021

Section 13: The Laplace Transform

We defined the Laplace transform.
Definition: Let $f(t)$ be defined on $[0, \infty)$. The Laplace transform of f is denoted and defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

There is a commonly used lower-case/upper-case convention in which we write

$$
\mathscr{L}\{f(t)\}=F(s)
$$

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta g(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
$-\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if
(a) $\quad f(t)=\cos (\pi t)$

$$
\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}},
$$

Here, $k=\pi$

$$
\mathscr{L}\{\cos (\pi t)\}=\frac{S}{S^{2}+\pi^{2}}
$$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if

$$
\begin{array}{ll}
\text { (b) } \begin{array}{rl}
f(t)=2 t^{4}-e^{-5 t}+3 & \mathscr{L}\{1\}=\frac{1}{s}, \\
& \mathscr{L}\left\{t^{n}\right\}=0 \\
\mathscr{L}\{f(t)\}=\mathcal{L n}, & s>0 \text { for } n=1,2, \ldots \\
& \left.=2 t^{4}-e^{-5 t}+3\right\} \\
& \mathscr{L}\left\{e^{a t\}}\right\}=\frac{1}{s-a}, \\
=2>a
\end{array} \\
=2\left(\frac{4!}{S^{4+1}}\right)-\frac{1}{s-(-5)}+3\left(\frac{1}{S}\right) \\
& =\frac{2(4!)}{S^{5}}-\frac{1}{S+5}+\frac{3}{S}
\end{array}
$$

Evaluate the Laplace transform $\mathscr{L}\{f(t)\}$ if
(c) $f(t)=(2-t)^{2}=4-4 t+t^{2}$ $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$ $\mathscr{L}\left\{t^{n}\right\}=\frac{n+}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$

$$
\begin{aligned}
\mathscr{L}\left\{(2-t)^{2}\right\} & =\mathcal{L}\left\{4-4 t+t^{2}\right\} \quad \mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a \\
& =4 \mathcal{L}\{1\}-4 \mathcal{L}\{t\}+\mathscr{L}\left\{t^{2}\right\} \\
& =4\left(\frac{1}{5}\right)-4\left(\frac{1!}{s^{1+1}}\right)+\frac{2!}{s^{2+1}} \\
& =\frac{4}{5}-\frac{4}{s^{2}}+\frac{2}{s^{3}}
\end{aligned}
$$

* How wild I integrate $\int(2-t)^{2} d t$?

Evaluate the Laplace transform $\delta(t-a)^{1}$

Suppose δ has the following property: If f is continuous on $[0, \infty)$ and $a \geq 0$, then

$$
\begin{aligned}
& \int_{0}^{\infty} f(t) \delta(t-a) d t=f(a) . \\
& \mathscr{L}\{\delta(t-a)\}=\int_{0}^{\infty} e^{-s t} \delta(t-a) d t \text { this of wherm } \\
&=e^{-s(a)}=e^{-a s} \\
& f(t)=e^{-s t}
\end{aligned}
$$

${ }^{1}$ This function is called the Dirac delta. It's not really a function in the traditional sense. It's what's known as a distribution.

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Definition: Let $c>0$. A function f defined on $[0, \infty)$ is said to be of exponential order c provided there exists positive constants M and T such that $|f(t)|<M e^{c t}$ for all $t>T$.

$$
\text { If doesnit } \rightarrow \infty \text { faster thon on exponenticl. }
$$

Definition: A function f is said to be piecewise continuous on an interval $[a, b]$ if f has at most finitely many jump discontinuities on $[a, b]$ and is continuous between each such jump.

Sufficient Conditions for Existence of $\mathscr{L}\{f(t)\}$

Theorem: If f is piecewise continuous on $[0, \infty)$ and of exponential order c for some $c>0$, then f has a Laplace transform for $s>c$.

An example of a function that is NOT of exponential order for any c is $f(t)=e^{t^{2}}$. Note that

$$
f(t)=e^{t^{2}}=\left(e^{t}\right)^{t} \quad \Longrightarrow \quad|f(t)|>e^{c t} \quad \text { whenever } \quad t>c .
$$

This is a function that doesn't have a Laplace transform. We won't be dealing with this type of function here.

Section 14: Inverse Laplace Transforms

Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s)
$$

We'll call $f(t)$ an inverse Laplace transform of $F(s)$.

A Table of Inverse Laplace Transforms

- $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1$
$-\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\}=t^{n}$, for $n=1,2, \ldots$
- $\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}$
- $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t$
- $\mathscr{L}^{-1}\left\{\frac{k}{s^{2}+k^{2}}\right\}=\sin k t$

The inverse Laplace transform is also linear so that

$$
\mathscr{L}^{-1}\{\alpha F(s)+\beta G(s)\}=\alpha f(t)+\beta g(t)
$$

Using a Table

When using a table of Laplace transforms, the expression must match exactly. For example,

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

SO

$$
\mathscr{L}^{-1}\left\{\frac{3!}{s^{4}}\right\}=t^{3}
$$

Note that $n=3$, so there must be 3 ! in the numerator and the power $4=3+1$ on s.

Find the Inverse Laplace Transform
(a) $\mathscr{L}^{-1}\left\{\frac{1}{s^{7}}\right\}$ If $n+1=7$, then $n=6$.

$$
\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}
$$

we need 6! on top.

$$
\begin{aligned}
& \frac{1}{S^{7}}=\frac{1}{s^{7}} \cdot \frac{6!}{6!}=\frac{1}{6!} \frac{6!}{S^{7}} \\
& \mathcal{L}^{-1}\left\{\frac{1}{s^{7}}\right\}=\ddot{\mathcal{L}}\left\{\frac{1}{6!} \frac{6!}{s^{7}}\right\}=\frac{1}{6!} \mathcal{L}^{-1}\left\{\frac{6!}{s^{7}}\right\}=\frac{1}{6!} t^{6}
\end{aligned}
$$

Example: Evaluate

$$
\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+k^{2}}\right\}=\cos k t
$$

$$
\begin{array}{ll}
\text { (b) } \begin{array}{ll}
\mathscr{L}^{-1}\left\{\frac{s+1}{s^{2}+9}\right\} & \\
=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+9}+\frac{k}{s^{2}+k^{2}}\right\}=\sin k t \\
=\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+9}\right\} & \text { * How would } \\
\text { we evaluate }
\end{array} \\
=\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+3^{2}}\right\}+\frac{1}{3} \mathscr{L}^{-1}\left\{\frac{3}{3} \frac{1}{s^{2}+3^{2}}\right\} & \left.\int \frac{3}{s^{2}+3^{2}}\right\}
\end{array}
$$

Example: Evaluate
How would we evaluate
(c) $\mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}$

$$
\int \frac{s-8}{s^{2}-2 s} d s ?
$$

Partied fraction decors.

$$
\begin{aligned}
\frac{s-8}{S(s-2)} & =\frac{A}{s}+\frac{B}{s-2} \quad \text { clear fractions } \\
s-8 & =A(s-2)+B S \\
& =(A+B) s-2 A
\end{aligned}
$$

equate like terms

$$
\begin{aligned}
& A+B=1 \\
&-2 A=-8 \Rightarrow A=4 \Rightarrow B=1-A=1-4=-3 \\
& \frac{s-s}{s(s-2)}=\frac{4}{s}-\frac{3}{s-2} \quad \mathscr{L}^{-1}\left\{\frac{1}{s}\right\}=1 \\
& \mathscr{L}^{-1}\left\{\frac{s-8}{s^{2}-2 s}\right\}=\left.\mathscr{L}^{-1}\left\{\frac{4}{s}-\frac{3}{s-2}\right\} \quad \mathscr{L}^{n+1}\right\}=t^{n}, \text { for } \\
&= 4 \mathscr{L}^{-1}\left\{\frac{1}{s}\right\}-3 \mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t} \\
&= 4-3 e^{2 t}
\end{aligned}
$$

