October 1 Math 2306 sec. 52 Fall 2021

Section 10: Variation of Parameters

We considered a second order, linear, nonhomogeneous equation in standard form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)
$$

with complementary solution $y_{c}=c_{1} y_{1}+c_{2} y_{2}$. The particular solution found by variation of parameters is

$$
\begin{gathered}
y_{p}=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) \text { where } \\
u_{1}=\int \frac{-g(x) y_{2}(x)}{W(x)} d x \text { and } u_{2}=\int \frac{g(x) y_{1}(x)}{W(x)} d x .
\end{gathered}
$$

Here, W is the Wronskian of y_{1} and y_{2}.

Example:
Solve the ODE

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x
$$

given that $y_{c}=c_{1} x^{2}+c_{2} x^{-2}$ is the complementary solution.
we need y_{p}. we $l l$ use variation of parameters.

$$
\begin{array}{r}
y_{p}=u_{1} y_{1}+u_{2} y_{2} . \text { From } y_{c} \\
y_{1}=x^{2} \quad \text { and } \quad y_{2}=x^{-2}
\end{array}
$$

we need g and w.

In standard form $y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{4}{x^{2}} y=\frac{\ln x}{x^{2}}$

Hence $g(x)=\frac{\ln x}{x^{2}} \cdot y_{1}=x^{2}, y_{2}=x^{-2}$

$$
\begin{aligned}
& \omega=\left|\begin{array}{cc}
x^{2} & x^{-2} \\
2 x & -2 x^{-3}
\end{array}\right|=x^{2}\left(-2 x^{-3}\right)-2 x\left(x^{-2}\right) \\
& =-2 x^{-1}-2 x^{-1}=-4 x^{-1} \\
& u_{1}=\int \frac{-g y_{2}}{w} d x=\int-\frac{\ln x x^{-2}}{-4 x^{-1}} d x=\frac{1}{4} \int(\ln x) x^{-2} \cdot x^{-2} \cdot x d x \\
& =\frac{1}{4} \int x^{-3} \ln x d x \\
& \text { Int by parts } \\
& u=\ln x \quad d u=\frac{1}{x} d x \\
& d v=x^{-3} d x \quad v=\frac{-x^{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{4}\left(\frac{-x^{2}}{2} \ln x-\int \frac{-x^{-2}}{2} \cdot \frac{1}{x} d x\right) \\
& =\frac{1}{4}\left(\frac{-x^{-2}}{2} \ln x-\frac{1}{4} x^{-2}\right) \\
& u_{1}=\frac{-x^{-2}}{8} \ln x-\frac{1}{16} x^{-2} \\
& u_{2}=\int \frac{9 y_{1}}{61} d x=\int \frac{\frac{\ln x}{x^{2}} x^{2}}{-4 x^{-1}} d x=\frac{-1}{4} \int x \ln x d x
\end{aligned}
$$

By parts $u=\ln x \quad d u=\frac{1}{x} d x$

$$
d v=x d x \quad v=\frac{x^{2}}{2}
$$

$$
\begin{aligned}
= & \frac{-1}{4}\left(\frac{x^{2}}{2} \ln x-\int \frac{x^{2}}{2} \cdot \frac{1}{x} d x\right)^{\frac{1}{2} x} \\
u_{2} & =\frac{-1}{4}\left(\frac{x^{2}}{2} \ln x-\frac{1}{4} x^{2}\right) \\
u_{1} & =\frac{-x^{-2}}{8} \ln x-\frac{1}{16} x^{-2} \quad u_{2}=\frac{-x^{2}}{8} \ln x+\frac{1}{16} x^{2} \\
y_{1} & =x^{2} \quad, \quad y_{2}=x^{-2} \\
y_{p} & =u_{1} y_{1}+u_{2} y_{2} \\
& =\left(\frac{-x^{-2}}{8} \ln x-\frac{1}{16} x^{-2}\right) x^{2}+\left(\frac{-x^{2}}{8} \ln x+\frac{1}{16} x^{2}\right) x^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{1}{8} \ln x-\frac{1}{16}-\frac{1}{8} \ln x+\frac{1}{16} \\
& y_{p}=\frac{-1}{4} \ln x
\end{aligned}
$$

The genera solution

$$
y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x
$$

Solve the IVP

$$
x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x, \quad y(1)=-1, \quad y^{\prime}(1)=0
$$

The generde solution to the ODE is

$$
y=c_{1} x^{2}+c_{2} x^{-2}-\frac{1}{4} \ln x
$$

Apply the initial conditions.

$$
\begin{aligned}
y^{\prime} & =2 c_{1} x-2 c_{2} x^{-3}-\frac{1}{4} \frac{1}{x} \\
y(1) & =c_{1}(1)^{2}+c_{2}(1)^{-2}-\frac{1}{4} \ln 1=-1 \\
c_{1}+c_{2} & =-1
\end{aligned}
$$

$$
\begin{aligned}
& y^{\prime}(1)=2 c_{1}(1)-2 c_{2}(1)^{3}-\frac{1}{4} \cdot \frac{1}{1}=0 \\
& 2 c_{1}-2 c_{2}=\frac{1}{4} \Rightarrow c_{1}-c_{2}=\frac{1}{8}
\end{aligned}
$$

Solve

$$
\begin{aligned}
& c_{1}+c_{2}=-1 \\
& c_{1}-c_{2}=\frac{1}{8}
\end{aligned}
$$

add
subtract

$$
2 c_{2}=\frac{-9}{8} \Rightarrow c_{2}=\frac{-9}{16}
$$

The solution to the IVP

$$
y=\frac{-7}{16} x^{2}-\frac{9}{16} x^{-2}-\frac{1}{4} \ln x
$$

Section 11: Linear Mechanical Equations

Simple Harmonic Motion

We consider a flexible spring from which a mass is suspended. In the absence of any damping forces (e.g. friction, a dash pot, etc.), and free of any external driving forces, any initial displacement or velocity imparted will result in free, undamped motion-a.k.a. simple harmonic motion.

Building an Equation: Hooke's Law

At equilibrium, displacement $x(t)=0$.
Hooke's Law: $\mathrm{F}_{\text {spring }}=k \mathrm{x}$
Figure: In the absence of any displacement, the system is at equilibrium. Displacement $x(t)$ is measured from equilibrium $x=0$.

Building an Equation: Hooke's Law
Newton's Second Law: $F=$ ma (mass times acceleration)

$$
a=\frac{d^{2} x}{d t^{2}} \quad \Longrightarrow \quad F=m \frac{d^{2} x}{d t^{2}}
$$

Hooke's Law: $F=k x$ (proportional to displacement)

$$
m \frac{d^{2} x}{d t^{2}}=-k x \quad \Rightarrow m x^{\prime \prime}+k x=0
$$

$2^{\text {nd }}$ order, linear, homogeneous, constant coefficient ODE.

This is $\quad x^{\prime \prime}+\omega^{2} x=0$ where $\omega^{2}=\frac{k}{m}$

Displacment in Equilibrium

Figure: Spring only, versus spring-mass equilibrium, and spring-mass (nonzero) displacement

Obtaining the Spring Constant (US Customary Units)

If an object with weight W pounds stretches a spring δx feet in equilibrium, then by Hooke's law we compute the spring constant via the equation

$$
W=k \delta x
$$

The units for k in this system of measure are lb/ft.

$$
k=\frac{W}{\delta x} \sim \frac{1 b}{f t}
$$

Obtaining the Spring Constant (US Customary Units)

Note also that Weight $=$ mass \times acceleration due to gravity. Hence if we know the weight of an object, we can obtain the mass via

$$
W=m g
$$

We typically take the approximation $g=32 \mathrm{ft} / \mathrm{sec}^{2}$. The units for mass are lb sec${ }^{2} / \mathrm{ft}$ which are called slugs.

$$
m=\frac{w}{g} \text { slugs }
$$

Obtaining the Spring Constant (SI Units)

In SI units,

- Weight (force) would be in Newtons (N),
- Length would be in meters (m),
- Spring constant would be in N / m
- Mass would be in kilograms (kg)

It is customary to describe an object by its mass in kilograms. When we encounter such a description, we deduce the weight in Newtons

$$
W=m g \text { taking the approximation } g=9.8 \mathrm{~m} / \mathrm{sec}^{2} .
$$

