October 20 Math 2306 sec. 51 Spring 2023

Section 11: Linear Mechanical Equations

Free Undamped Motion

In the absence of damping or external force, the displacement (from
equilibrium) of an object of mass m subject to the force of a flexible
spring with spring constant k is governed by the second order, linear,
homogeneous differential equation

mx" +kx =0 ie., x'+uw?’x=0,

where the parameter
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Free Damped Motion

Fluid imposes a
damping force.
dx

F damping — ba

where b > 0
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©2004 Thomson/Brooks Cole.

Figure: If a damping force is added, we’ll assume that this force is
proportional to the instantaneous velocity.

October 18, 2023

2/33



Free Damped Motion

Now we wish to consider an added force corresponding to
damping—ifriction, a dashpot, air resistance.

Total Force = Force of spring + Force of damping
ox __dx

mdt2 = —ba — kx
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Case 1: \? > w? Overdamped

x(t) = e <c1 e!V¥ | gt A2‘”2>

Highly over-danped

il F

Figure:|Two distinct real roots. oscillations. Approach to equilibrium may

be slow.
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Case 2: \? = w? Critically Damped

x(t) = e (¢1 + oot)

x(1)

critical damping

Figure@o oscillations. Fastest approach to equilibrium.
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Case 3: \? < w? Underdamped

x(t) = e M (¢q cos(wit) + Casin(wit)), wy = Vw? — N2

x(t) underdamped

NA A
Wl

Figure: Complex conjugate roots. Oscillations occur as the system
approaches (resting) equilibrium.
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Comparison of Damping
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Figure

: Comparison of motion for the three damping types.
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¥ mx= oy — WX

Example o

Se <
A 2 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
10 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped.
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Example
A 3 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
12 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped. If the mass is released from the
equilibrium position with an upward velocity of 1 m/sec, solve the
resulting initial value problem.
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