October 20 Math 2306 sec. 54 Fall 2021

Section 14: Inverse Laplace Transforms

Recall from section 13 that for f defined on $[0, \infty)$, the Laplace transform of f is defined by

$$
\mathscr{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Now we wish to go backwards: Given $F(s)$ can we find a function $f(t)$ such that $\mathscr{L}\{f(t)\}=F(s)$?

If so, we'll use the following notation

$$
\mathscr{L}^{-1}\{F(s)\}=f(t) \quad \text { provided } \quad \mathscr{L}\{f(t)\}=F(s)
$$

We'll use a table to evaluate all inverse Laplace transforms.

The Laplace Transform is a Linear Transformation

Some basic results include:

- $\mathscr{L}\{\alpha f(t)+\beta g(t)\}=\alpha F(s)+\beta G(s)$
- $\mathscr{L}\{1\}=\frac{1}{s}, \quad s>0$
- $\mathscr{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$ for $n=1,2, \ldots$
- $\mathscr{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
- $\mathscr{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}, \quad s>0$
- $\mathscr{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}, \quad s>0$

Evaluate

$$
\begin{aligned}
& \mathscr{L}\left\{\left(e^{-t}+e^{2 t}\right)^{2}\right\} \\
&\left(e^{-t}+e^{2 t}\right)^{2}=\left(e^{-t}\right)^{2}+2 e^{-t} e^{2 t}+\left(e^{2 t}\right)^{2} \\
&=e^{-2 t}+2 e^{t}+e^{4 t}
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{L}\left\{\left(e^{-t}+e^{2 t}\right)^{2}\right\} & =\mathcal{L}\left\{e^{-2 t}+2 e^{t}+e^{4 t}\right\} \\
& =\mathcal{L}\left\{e^{-2 t}\right\}+2 \mathcal{L}\left\{e^{t}\right\}+\mathcal{L}\left\{e^{4 t}\right\} \\
& =\frac{1}{s-(-2)}+2 \frac{1}{s-1}+\frac{1}{s-4}
\end{aligned}
$$

$$
=\frac{1}{S+2}+\frac{2}{S-1}+\frac{1}{s-4}
$$

Evaluate

$$
\mathscr{L}^{-1}\left\{\frac{1}{(s-1)(s+4)}\right\} \quad \mathscr{L}^{-1}\{F(s) G(s)\} \neq \mathscr{L}^{-1}\{F(s)\} \mathscr{L}^{-1}\{G(s)\}
$$

How would we evaluate $\int \frac{1}{(s-1)(s+4)} d s$?
Portia fraction decomp.

Decomp

$$
\begin{aligned}
& \frac{1}{(s-1)(s+4)}=\frac{A}{s-1}+\frac{B}{s+4} \quad \text { crow fractions } \\
& 1=A(s+4)+B(s-1)
\end{aligned}
$$

$$
=A s+4 A+B s-B
$$

$\underset{\sim}{O}+1=(A+B) s+4 A-B$
zero

$$
\begin{aligned}
& A+B=0 \Rightarrow B=-A \\
& 4 A-B=1 \\
& 4 A-(-A)=1 \\
& \quad S A=1 \Rightarrow A=\frac{1}{5}, B=\frac{-1}{5}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{(s-1)(s+4)}=\frac{\frac{1}{5}}{s-1}-\frac{\frac{1}{5}}{s+4} \\
& \mathcal{L}^{-1}\left\{\frac{1}{(s-1)(s+4)}\right\}=\mathscr{L}^{-1}\left\{\frac{\frac{1}{5}}{s-1}-\frac{\frac{1}{5}}{s+4}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{5} \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}-\frac{1}{5} \mathcal{L}^{-1}\left\{\frac{1}{s+4}\right\} \\
& =\frac{1}{5} e^{1 t}-\frac{1}{5} e^{-4 t} \\
& =\frac{1}{5} e^{t}-\frac{1}{5} e^{-4 t}
\end{aligned}
$$

Find $\mathscr{L}\left\{f^{\prime}(t)\right\}$
Suppose f is of exponential order and has Laplace transform $F(s)=\mathscr{L}\{f(t)\}$. What is
f being of exponewtid or de

$$
\mathscr{L}\left\{f^{\prime}(t)\right\} ?
$$ means

$$
\lim _{t \rightarrow \infty} e^{-5 t} f(t)=0
$$

for s big enough

$$
\begin{array}{rlrl}
\mathcal{L}\left\{f^{\prime}(t)\right\}=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t & \text { Int by pants } \\
=\left.e^{-s t} f(t)\right|_{0} ^{\infty}-\int_{0}^{\infty}-s e^{-s t} f(t) d t & v & =f^{\prime}(t) d t \\
& =f(t) \\
u & =e^{-s t} \\
& d u & =-s e^{-s t} d t
\end{array}
$$

$$
\begin{aligned}
& =0-e^{0} f(0)+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& \mathscr{L}\left\{f^{\prime}(t)\right\}=-f(0)+s \mathcal{L}\{f(t)\} \\
& \mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
\end{aligned}
$$

Solve the IVP
Well use the Laplace $y^{\prime}+4 y=e^{t}, \quad y(0)=1$ transform

* Let $\mathcal{L}\{y(t)\}=Y(s)$
- take \mathcal{L} of the ODE
- Isolate the Laplace transform

$$
\mathcal{L}\{y(t)\}=\Psi(s)
$$

- get $y(t)$ by taking $\mathscr{L}^{-1}\{Y(s)\}$.

$$
\mathcal{L}\left\{y^{\prime}+4 y\right\}=\mathcal{L}\left\{e^{t}\right\}
$$

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime}\right\}+4 \mathcal{L}\{y\}=\mathcal{L}\left\{e^{t}\right\} \\
& \mathcal{L}\left\{y^{\prime}\right\}+4 Y(s)=\frac{1}{s-1} \quad \text { Use } \\
& s Y(s)-y(0)+4 Y(s)=\frac{1}{s-1} \quad \begin{array}{l}
\text { use } \\
\\
y(0)=1
\end{array} \\
& s Y(s)-1+4 Y(s)=\frac{1}{s-1}
\end{aligned}
$$

|solate $\Psi(s) w \mid$ alsebora

$$
(s+4) Y(s)=\frac{1}{s-1}+1
$$

$$
\begin{aligned}
& \psi(s)=\frac{\frac{1}{s-1}}{s+4}+\frac{1}{s+4} \\
& \Psi(s)=\frac{1}{(s-1)(s+4)}+\frac{1}{s+4}
\end{aligned}
$$

we con use the decomp from betale

$$
\begin{gathered}
\frac{1}{(s-1)(s+4)}=\frac{\frac{1}{5}}{s-1}-\frac{\frac{1}{5}}{s+4} \\
Y(s)=\frac{\frac{1}{5}}{s-1}-\frac{\frac{1}{5}}{s+4}+\frac{1}{s+4} \\
Y(s)=\frac{\frac{1}{5}}{s-1}+\frac{\frac{4}{5}}{s+4}
\end{gathered}
$$

The solution the the

$$
\begin{aligned}
& y(t)=\mathscr{L}^{-1}\{\Psi(s)\} \\
&=\frac{1}{5} \mathscr{L}^{-1}\left\{\frac{1}{s-1}\right\}+\frac{4}{5} \mathcal{L}^{-1}\left\{\frac{1}{s+4}\right\} \\
&=\frac{1}{5} e^{t}+\frac{4}{5} e^{-4 t} \\
& y(t)=\frac{1}{5} e^{t}+\frac{4}{5} e^{-4 t}
\end{aligned}
$$

