October 20 Math 3260 sec. 51 Fall 2025

4.2.1 Fundamental Subspaces of a Matrix

Row & Column Spaces

Let A be an $m \times n$ matrix. The subspace of \mathbb{R}^n spanned by the row vectors of A, denoted

$$\mathcal{RS}(A) = \operatorname{Span}\{\operatorname{Row}_1(A), \dots, \operatorname{Row}_m(A)\},\$$

is called the **row space of** A.

The subspace of R^m spanned by the column vectors of A, denoted

$$CS(A) = Span\{Col_1(A), \dots, Col_n(A)\},\$$

is called the **column space of** A.

These are two of four **fundamental subspaces** of a matrix.

$$CS(A) \& RS(A) \text{ of } A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

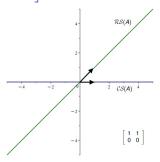


Figure: $\mathcal{RS}(A) = \operatorname{Span}\{\langle 1, 1 \rangle\}$ and $\mathcal{CS}(A) = \operatorname{Span}\{\langle 1, 0 \rangle\}$. The row and column spaces of this matrix A are the lines $x_2 = x_1$ and $x_2 = 0$, respectively.

Remember not to read too much into this example. Row and Columns Spaces are not always "lines."

A Third Fundamental Subspace

Definition: Null Space

Let A be an $m \times n$ matrix. The **null space** of A, denoted $\mathcal{N}(A)$, is the set of all solutions of the homogeneous equation $A\vec{x} = \vec{0}_m$. That is,

$$\mathcal{N}(A) = \{ \vec{x} \in R^n \, | \, A\vec{x} = \vec{0}_m \}.$$

- For $m \times n$ matrix A, the product $A\vec{x}$ is only defined if \vec{x} is in R^n .
- The null space contains all solutions of the homogeneous equation $A\vec{x} = \vec{0}_m$.
- ▶ To say that $\vec{u} \in \mathcal{N}(A)$ means that $A\vec{u} = \vec{0}_m$.

 $\mathcal{N}(A) = \{ \vec{x} \in R^n \mid A\vec{x} = \vec{0}_m \}$ is the null space of $m \times n$ matrix A.

Theorem

Let A be an $m \times n$ matrix. Then $\mathcal{N}(A)$ is a subspace of \mathbb{R}^n .

Proof: Let A be an $m \times n$ matrix. We have to show that (1) $\mathcal{N}(A)$ is not empty, (2) $\mathcal{N}(A)$ is closed under vector addition, and (3) $\mathcal{N}(A)$ is closed under scalar multiplication.

Since
$$A\vec{x} = \vec{0}_m$$
 always admits the trivial solution, $\vec{0}_n$ is in $\mathcal{N}(A)$ making $\mathcal{N}(A)$ making which was a suppose \vec{u} and \vec{v} are in $\mathcal{N}(A)$.

Then $A\vec{i}$ $\vec{0}_m$ and $A\vec{v} = \vec{0}_m$.

Note that $A(\vec{u}+\vec{v}) = A\vec{u} + A\vec{v} = \vec{0}_m + \vec{0}_m = \vec{0}_m$ So $\vec{u}+\vec{v}$ is in W(A) making W(A) closed when vector addition. Let c be any scalar. Then

A $(c\vec{u}) = cA\vec{u} = c\vec{0}m = \vec{0}m$. Hence $c\vec{u}$ is m N(A), and N(A) is closed under scalar multiplication. Hence N(A) is a subspace of \mathbb{R}^n .

Example

Find a spanning set for $\mathcal{N}(A)$ where $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

Set up
$$[A \mid \vec{o}_2]$$
. $[A \mid \vec{o}_2] = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ already

So
$$\vec{\chi} = \langle -\chi_2, \chi_2 \rangle = \chi_2 \langle -l_1 \rangle$$
.
Thus gives $N(A) = Spen \{\langle -l_1 \rangle \rangle$.

October 18, 2025

Example

Find a spanning set for
$$\mathcal{N}(A^T)$$
 where $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$.

Set up
$$\begin{bmatrix} A^T \mid \vec{O}_z \end{bmatrix}$$

 $\begin{bmatrix} A^T \mid \vec{O}_z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \xrightarrow{\text{rest}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

$$\vec{A}^{T}\vec{X} = \vec{O}_{2}$$
 as $\vec{X} = \langle x_{i,j} x_{i,j} \rangle$, $x_{i,j} = 0$, x_{2} is free

October 18, 2025

Interpreting the Fundamental Subspaces

We already have an interpretation of the column space and the null space. For $m \times n$ matrix A

- ▶ CS(A) is all $\vec{y} \in R^m$ such that $A\vec{x} = \vec{y}$ is consistent, and
- $ightharpoonup \mathcal{N}(A)$ is all $\vec{x} \in R^n$ such that $A\vec{x} = \vec{0}_m$.

Question:

How can we interpret the row space?

Since the row space and the null space are both subspaces of \mathbb{R}^n , we can ask how they are related. Let's remember that the product

$$A\vec{x} = \langle \mathsf{Row}_1(A) \cdot \vec{x}, \mathsf{Row}_2(A) \cdot \vec{x}, \dots, \mathsf{Row}_m(A) \cdot \vec{x} \rangle$$

Question from Exam 1

Let \vec{u} and \vec{v} be two vectors in R^n . Suppose \vec{x} is a vector in R^n such that \vec{x} is orthogonal to \vec{u} and \vec{x} is orthogonal to \vec{v} . Show that \vec{x} is orthogonal to every vector in $\text{Span}\{\vec{u}, \vec{v}\}$.

This result generalizes. That is, if

$$\vec{x} \cdot \vec{v}_1 = 0$$
, and $\vec{x} \cdot \vec{v}_2 = 0$, and $\vec{x} \cdot \vec{v}_3 = 0$, ..., and $\vec{x} \cdot \vec{v}_m = 0$ then

$$\vec{x} \cdot \vec{z} = 0$$

for every vector \vec{z} in $Span\{\vec{v}_1,\ldots,\vec{v}_m\}$.

The Row Space

Suppose $\vec{x} \in \mathcal{N}(A)$ for some $m \times n$ matrix A. Then $A\vec{x} = \vec{0}_m$ which means that

$$Row_{1}(A) \cdot \vec{x} = 0$$

$$Row_{2}(A) \cdot \vec{x} = 0$$

$$\vdots \quad \vdots \quad \vdots$$

$$Row_{m}(A) \cdot \vec{x} = 0$$

That is, a vector $\vec{x} \in \mathcal{N}(A)$ is orthogonal to every row vector of A. Since that means that \vec{x} is orthogonal to every linear combination of the row vectors of A, we can say

Every vector in $\mathcal{RS}(A)$ is orthogonal to every vector in $\mathcal{N}(A)$ and vice versa.

Orthogonal Complements

Let W be a subspace of R^n . The **orthogonal complement** of W, denoted W^{\perp} , is the set of all \vec{x} in R^n that are orthogonal to all vectors in W. We can write

$$W^{\perp} = \left\{ \vec{x} \in R^n \mid \vec{x} \cdot \vec{w} = 0, \text{ for all } \vec{w} \in W \right\}.$$

The symbol W^{\perp} is read "W perp."

$\mathcal{RS}(A)$ & $\mathcal{N}(A)$

For $m \times n$ matrix A, the row space of A is the orthogonal complement of the null space of A.

$$\mathcal{RS}(A) = \mathcal{N}(A)^{\perp}$$
 and $\mathcal{N}(A) = \mathcal{RS}(A)^{\perp}$.

$$\mathcal{RS}(A) \& \mathcal{N}(A) \text{ of } A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

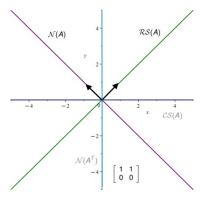


Figure: The row and null spaces of this matrix A are the lines $x_2 = x_1$ and $x_2 = -x_1$, respectively. In this case, they are actually perpendicular lines.

Orthogonal Complements in R³

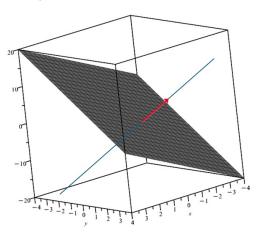


Figure: A subspace of \mathbb{R}^3 that corresponds to a plane together with its orthogonal complement corresponding to a line.

The Fourth Fundamental Subspace

The fourth fundamental subspace of a matrix A is the null space of A^T , i.e., $\mathcal{N}(A^T)$. Recall that for a matrix A,

$$Col_i(A) = Row_i(A^T)$$
 and $Row_i(A) = Col_i(A^T)$.

So this fourth subspace is the orthogonal complement of CS(A).

$\mathcal{N}(A^T)$

For $m \times n$ matrix A

$$\mathcal{N}(A^T) = \left\{ \vec{x} \in R^m \mid A^T \vec{x} = \vec{0}_n \right\}.$$

Equivalently

$$\mathcal{N}(A^T) = \{ \vec{x} \in R^m | \vec{x} \cdot \vec{y} = 0, \text{ for every } \vec{y} \in \mathcal{CS}(A) \}.$$

$$CS(A) \& \mathcal{N}(A^T) \text{ of } A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

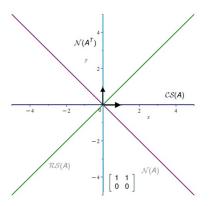


Figure: The column space of A and null space of A^T are the lines $x_2 = 0$ and $x_1 = 0$, respectively. These are also perpendicular line.

Example

Find a spanning set for each of the four fundamental subspaces of the matrix

$$A = \left[\begin{array}{cccc} 1 & -2 & 5 & 4 \\ 2 & -4 & 1 & -1 \end{array} \right].$$

For RS(A), just use the row vectors.

For CS(A), use the column vectors.

$$A = \begin{bmatrix} 1 & -2 & 5 & 4 \\ 2 & -4 & 1 & -1 \end{bmatrix} \qquad \text{For} \qquad \mathcal{N}(A) , \text{ solve } A \stackrel{\rightleftharpoons}{\times} = \stackrel{\rightleftharpoons}{\circ}_{\sim}$$

$$\begin{bmatrix} A \mid \delta_z \end{bmatrix} = \begin{bmatrix} 1 - 2 & 5 & 4 & | & 0 \\ 2 & -4 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{\text{cref}} \begin{bmatrix} 1 & -2 & 0 & -1 & | & 0 \\ 0 & 0 & 1 & 1 & | & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 5 & 4 \\ 2 & -4 & 1 & -1 \end{bmatrix} \qquad A^{T} \cdot \begin{bmatrix} 1 & 2 \\ -2 & -4 \\ 5 & 1 \end{bmatrix} \qquad A^{T} \times \begin{bmatrix} 1 & 2 \\ 5 & 1 \\ 4 & -1 \end{bmatrix} \qquad A^{T} \times \begin{bmatrix} 1 & 2 \\ 5 & 1 \\ 4 & -1 \end{bmatrix} \qquad A^{T} \times \begin{bmatrix} 1 & 2 \\ 5 & 1 \\ 4 & -1 \end{bmatrix} \qquad A^{T} \times \begin{bmatrix} 1 & 2 \\ 5 & 1 \\ 0 & 0 \end{bmatrix} \qquad A^{T} \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 0 & 0$$