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Section 11: Linear Mechanical Equations

We were considering the displacement from equilibrium, x(t), of an
object of mass m suspended from a flexible spring with spring constant
k . In the absence of any sort of damping or external forces, the object
exhibits simple harmonic motion.

The displacement is subject to the second order, linear, homogeneous
differential equation

mx ′′ + kx = 0 i.e., x ′′ + ω2x = 0,

where the parameter

ω2 =
k
m
.



Equilibrium & Displacment in Equilibrium

Figure: Hooke’s law states that the displacement in equilibrium, δx , is related
to the object’s weight, W , via W = kδx . We’ll use the convention

x > 0 above equilibrium, and x < 0 below equilibrium.

Remark: Since W = mg = kδx , ω2 =
k
m

=
g
δx

.



Simple Harmonic Motion

With initial displacement x0 and initial velocity, x1, the position x(t) at
time t satisfies the IVP

x ′′ + ω2x = 0, x(0) = x0, x ′(0) = x1.

Characteristics of the system include

▶ the period T = 2π
ω ,

▶ the frequency f = 1
T = ω

2π
1

▶ the circular (or angular) frequency ω, and

▶ the amplitude or maximum displacement A =
√

x2
0 + (x1/ω)2

1Various authors call f the natural frequency and others use this term for ω.



Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine)
function. Letting

x(t) = x0 cos(ωt) +
x1

ω
sin(ωt) = A sin(ωt + ϕ) = A cos(ωt − ϕ̂)

where the amplitude

A =
√

x2
0 + (x1/ω)2,

and the phase shift ϕ or ϕ̂ must be defined by

sinϕ =
x0

A
, and cosϕ =

x1

ωA
or cos ϕ̂ =

x0

A
, and sin ϕ̂ =

x1

ωA
.

Note, ϕ+ ϕ̂ = π
2 (up to an integer multiple of 2π).



Example
A 4 pound weight stretches a spring 6 inches. The mass is released
from a position 4 feet above equilibrium with an initial downward
velocity of 24 ft/sec. Find the equation of motion in the form
x = A sin(ωt + ϕ), and identify the period, amplitude, phase shift, and
frequency of the motion. (Take g = 32 ft/sec2.)

From the weight W = 4lb and displacement in equilibrium δx = 1
2 ft,

we found the mass and spring constant

m =
1
8

slugs, and k = 8
lb
ft
.

This makes
ω2 = 64

1
sec2 .

We ended up with the ODE

1
8

x ′′ + 8x = 0 =⇒ x ′′ + 64x = 0.









Free Damped Motion

Figure: If a damping force is added, we’ll assume that this force is
proportional to the instantaneous velocity.



Free Damped Motion

Now we wish to consider an added force corresponding to
damping—friction, a dashpot, air resistance.

Total Force = Force of spring + Force of damping

m
d2x
dt2 = −b

dx
dt

− kx =⇒ d2x
dt2 + 2λ

dx
dt

+ ω2x = 0

where

2λ =
b
m

and ω =

√
k
m
.

Three qualitatively different solutions can occur depending on the
nature of the roots of the characteristic equation

r2 + 2λr + ω2 = 0 with roots r1,2 = −λ±
√
λ2 − ω2.



Case 1: λ2 > ω2 Overdamped

x(t) = e−λt
(

c1et
√

λ2−ω2
+ c2e−t

√
λ2−ω2

)

Figure: Two distinct real roots. No oscillations. Approach to equilibrium may
be slow.



Case 2: λ2 = ω2 Critically Damped

x(t) = e−λt (c1 + c2t)

Figure: One real root. No oscillations. Fastest approach to equilibrium.



Case 3: λ2 < ω2 Underdamped

x(t) = e−λt (c1 cos(ω1t) + c2 sin(ω1t)) , ω1 =
√
ω2 − λ2

Figure: Complex conjugate roots. Oscillations occur as the system
approaches (resting) equilibrium.



Comparison of Damping

Figure: Comparison of motion for the three damping types.



Example

A 2 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
10 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped.





Note, we didn't have to do this second test. 
But it shows that our conclusion based on 
the roots matches the condition related 
to the parameters, lambda and omega.


