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Section 11: Linear Mechanical Equations

We were considering the displacement from equilibrium, x(t), of an
object of mass m suspended from a flexible spring with spring constant
k . In the absence of any sort of damping or external forces, the object
exhibits simple harmonic motion.

The displacement is subject to the second order, linear, homogeneous
differential equation

mx ′′ + kx = 0 i.e., x ′′ + ω2x = 0,

where the parameter

ω2 =
k
m
.



Equilibrium & Displacment in Equilibrium

Figure: Hooke’s law states that the displacement in equilibrium, δx , is related
to the object’s weight, W , via W = kδx . We’ll use the convention

x > 0 above equilibrium, and x < 0 below equilibrium.

Remark: Since W = mg = kδx , ω2 =
k
m

=
g
δx

.



Simple Harmonic Motion

With initial displacement x0 and initial velocity, x1, the position x(t) at
time t satisfies the IVP

x ′′ + ω2x = 0, x(0) = x0, x ′(0) = x1.

Characteristics of the system include

▶ the period T = 2π
ω ,

▶ the frequency f = 1
T = ω

2π
1

▶ the circular (or angular) frequency ω, and

▶ the amplitude or maximum displacement A =
√

x2
0 + (x1/ω)2

1Various authors call f the natural frequency and others use this term for ω.



Amplitude and Phase Shift

We can formulate the solution in terms of a single sine (or cosine)
function. Letting

x(t) = x0 cos(ωt) +
x1

ω
sin(ωt) = A sin(ωt + ϕ) = A cos(ωt − ϕ̂)

where the amplitude

A =
√

x2
0 + (x1/ω)2,

and the phase shift ϕ or ϕ̂ must be defined by

sinϕ =
x0

A
, and cosϕ =

x1

ωA
or cos ϕ̂ =

x0

A
, and sin ϕ̂ =

x1

ωA
.

Note, ϕ+ ϕ̂ = π
2 (up to an integer multiple of 2π).



Example
A 4 pound weight stretches a spring 6 inches. The mass is released
from a position 4 feet above equilibrium with an initial downward
velocity of 24 ft/sec. Find the equation of motion in the form
x = A sin(ωt + ϕ), and identify the period, amplitude, phase shift, and
frequency of the motion. (Take g = 32 ft/sec2.)

From the weight W = 4lb and displacement in equilibrium δx = 1
2 ft,

we found the mass and spring constant

m =
1
8

slugs, and k = 8
lb
ft
.

This makes
ω2 = 64

1
sec2 .

We ended up with the ODE

1
8

x ′′ + 8x = 0 =⇒ x ′′ + 64x = 0.









Free Damped Motion

Figure: If a damping force is added, we’ll assume that this force is
proportional to the instantaneous velocity.



Free Damped Motion

Now we wish to consider an added force corresponding to
damping—friction, a dashpot, air resistance.

Total Force = Force of spring + Force of damping

m
d2x
dt2 = −b

dx
dt

− kx =⇒ d2x
dt2 + 2λ

dx
dt

+ ω2x = 0

where

2λ =
b
m

and ω =

√
k
m
.

Three qualitatively different solutions can occur depending on the
nature of the roots of the characteristic equation

r2 + 2λr + ω2 = 0 with roots r1,2 = −λ±
√
λ2 − ω2.



Case 1: λ2 > ω2 Overdamped

x(t) = e−λt
(

c1et
√

λ2−ω2
+ c2e−t

√
λ2−ω2

)

Figure: Two distinct real roots. No oscillations. Approach to equilibrium may
be slow.



Case 2: λ2 = ω2 Critically Damped

x(t) = e−λt (c1 + c2t)

Figure: One real root. No oscillations. Fastest approach to equilibrium.



Case 3: λ2 < ω2 Underdamped

x(t) = e−λt (c1 cos(ω1t) + c2 sin(ω1t)) , ω1 =
√
ω2 − λ2

Figure: Complex conjugate roots. Oscillations occur as the system
approaches (resting) equilibrium.



Comparison of Damping

Figure: Comparison of motion for the three damping types.



Example

A 2 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
10 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped.






