October 22 Math 2306 sec. 52 Fall 2021
Section 15: Shift Theorems
Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$?

By definition

$$
\begin{aligned}
& \mathscr{L}\left\{e^{t} t^{2}\right\}=\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t \quad e^{-s t} e^{t} \\
&=\int_{0}^{\infty} e^{-(s-1) t} t^{2} d t \\
&=e^{-s t+t} \\
&=e_{0}^{\infty} e^{-p t} t^{2} d t \quad \text { if } p=s-1 \\
&=F(p) \text { where } F(s)=\mathcal{L}\left\{t^{2}\right\}
\end{aligned}
$$

$\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$
If $f(t)=t^{2}$, then $F(s)=\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$, and

$$
F(s-1)=\frac{2}{(s-1)^{3}}=\mathscr{L}\left\{e^{t} t^{2}\right\} .
$$

In general, if $F(s)=\mathscr{L}\{f(t)\}$, then

$$
\begin{aligned}
F(s-a) & =\int_{0}^{\infty} e^{-(s-a) t} f(t) d t=\int_{0}^{\infty} e^{-s t}\left[e^{a t} f(t)\right] d t \\
& =\mathscr{L}\left\{e^{a t} f(t)\right\}
\end{aligned}
$$

Theorem (translation in s)

Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a) .
$$

In other words, if $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\} .
$$

Example
Evaluate
(a) $\mathscr{L}\left\{t^{6} e^{3 t}\right\}=\frac{6!}{(s-3)^{7}}$
a) $\mathcal{L}\left\{t^{6}\right\}=\frac{6!}{S^{7}}=F(s)$ $a=3$
(b)

$$
\begin{aligned}
\mathscr{L} & \left\{e^{-t} \cos (t)\right\}=\frac{s-(-1)}{(s-(-1))^{2}+1} \\
& =\frac{s+1}{(s+1)^{2}+1}
\end{aligned}
$$

b)

$$
\begin{gathered}
\mathcal{L}\{\cos t\}=\frac{s}{s^{2}+1}=F(s) \\
a=-1
\end{gathered}
$$

(c) $\mathscr{L}\left\{\boldsymbol{e}^{-t} \sin (t)\right\}$
C)

$$
=\frac{1}{(s+1)^{2}+1}
$$

$$
\begin{aligned}
\mathcal{L}\{\sin t\} & =\frac{1}{s^{2}+1}=F(s) \\
a & =-1
\end{aligned}
$$

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}$
con we do partial fractions on $\frac{s}{s^{2}+2 s+2}$

$$
b^{2}-4 a c=2^{2}-4 \cdot 1 \cdot 2=-4<0
$$

$s^{2}+2 s+2$ is irreducible \Rightarrow complete the square
Complete the square

$$
\begin{aligned}
& s^{2}+2 s+2=s^{2}+2 s+1-1+2=(s+1)^{2}+1 \\
& \frac{s}{s^{2}+2 s+2}=\frac{s}{(s+1)^{2}+1} \text { we need } \\
& \text { sol here too }
\end{aligned}
$$

Use that $s=s+1-1$
Hence

$$
\frac{s}{s^{2}+2 s+2}=\frac{s+1-1}{(s+1)^{2}+1}=\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1}
$$

looker like

$$
\frac{s}{s^{2}+1}
$$

$$
\frac{1}{s^{2}+1}
$$

If $s-a=s+1$ then $a=-1$

$$
\begin{aligned}
\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\} & =\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\}-\mathcal{L}^{-1}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
& =e^{-t} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}-e^{-t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}
\end{aligned}
$$

$$
=e^{-t} \cos t-e^{-t} \sin t
$$

Inverse Laplace Transforms (repeat linear factors)
(b) $\mathscr{L}^{-1}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}$
we ll do a partial fraction decomp.

$$
\begin{aligned}
\frac{1+3 s-s^{2}}{s(s-1)^{2}} & =\frac{A}{s}+\frac{B}{s-1}+\frac{C}{(s-1)^{2}} \\
1+3 s-s^{2} & =A(s-1)^{2}+B s(s-1)+C s \\
& =A\left(s^{2}-2 s+1\right)+B\left(s^{2}-s\right)+C s \\
-s^{2}+3 s+1 & =(A+B) s^{2}+(-2 A-B+C) s+A
\end{aligned}
$$

clear.
fraction

$$
\begin{gathered}
A+B=-1 \\
-2 A-B+C=3 \\
A=1 \quad B=-1-A=-2 \\
C=3+2 A+B=3+2-2=3 \\
\frac{1+3 s-s^{2}}{s(s-1)^{2}}=\frac{1}{s}-\frac{2}{s-1}+\frac{3}{(s-1)^{2}} \\
\dot{\varphi}\left\{\frac{1+3 s-s^{2}}{s(s-1)^{2}}\right\}=\dot{\mathcal{L}}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 \mathcal{L}^{-1}\left\{\frac{1}{(s-1)^{2}}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& =\mathcal{L}^{-1}\left\{\frac{1}{s}\right\}-2 \mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\}+3 e^{t} \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\} \\
& =1-2 e^{t}+3 e^{t} t
\end{aligned}
$$

