
October 23 Math 2306 sec. 51 Fall 2024

Section 11: Linear Mechanical Equations

We are considering a flexible spring with an object attached. In the
absence of damping and driving, we get simple harmonic motion.

mx ′′ + kx = 0

With linear damping and no driving, we get a spring-mass-damping
system.

mx ′′ + bx ′ + kx = 0

▶ m is mass (in kg or slugs),
▶ b is the damping coefficient (in N/(m/sec) or lbs/(ft/sec))
▶ k is the spring constant (in N/m or lb/ft)
▶ x(t) is the position/displacement from equilibrium (in m or ft) at

time t in seconds.



Damping Types
For the damped motion, there are three damping types that equate to
the three types of roots of the characteristic equation.
▶ Over damping (two distinct real roots),
▶ Critical damping (one repeated real root),
▶ Under damping (complex conjugate roots)

Figure: Comparison of motion for the three damping types.



Example
A 3 kg mass is attached to a spring whose spring constant is 12 N/m.
The surrounding medium offers a damping force numerically equal to
12 times the instantaneous velocity. Write the differential equation
describing this system. Determine if the motion is underdamped,
overdamped or critically damped. If the mass is released from the
equilibrium position with an upward velocity of 1 m/sec, solve the
resulting initial value problem.









Driven Motion

We can consider the application of an external driving force (with or
without damping). Assume a time dependent force f (t) is applied to
the system. The ODE governing displacement becomes

m
d2x
dt2 = −b

dx
dt

− kx + f (t), b ≥ 0.

Divide out m and let F (t) = f (t)/m to obtain the nonhomogeneous
equation

d2x
dt2 + 2λ

dx
dt

+ ω2x = F (t)



Forced Undamped Motion and Resonance

Consider the case F (t) = F0 cos(γt) or F (t) = F0 sin(γt), and λ = 0.
Two cases arise

(1) γ ̸= ω, and (2) γ = ω.

Taking the sine case, the DE is

x ′′ + ω2x = F0 sin(γt)

with complementary solution

xc = c1 cos(ωt) + c2 sin(ωt).



x ′′ + ω2x = F0 sin(γt)

Note that

xc = c1 cos(ωt) + c2 sin(ωt).

Using the method of undetermined coefficients, the first guess to the
particular solution is

xp = A cos(γt)+B sin(γt)



x ′′ + ω2x = F0 sin(γt)

Note that

xc = c1 cos(ωt) + c2 sin(ωt).

Using the method of undetermined coefficients, the first guess to the
particular solution is

xp = A cos(γt)+B sin(γt)



Forced Undamped Motion and Resonance

For F (t) = F0 sin(γt) starting from rest at equilibrium:

Case (1): x ′′ + ω2x = F0 sin(γt), x(0) = 0, x ′(0) = 0

x(t) =
F0

ω2 − γ2

(
sin(γt)− γ

ω
sin(ωt)

)
If γ ≈ ω, the amplitude of motion could be rather large!



Pure Resonance

Case (2): x ′′ + ω2x = F0 sin(ωt), x(0) = 0, x ′(0) = 0

x(t) =
F0

2ω2 sin(ωt)− F0

2ω
t cos(ωt)

Note that the amplitude, α, of the second term is a function of t:

α(t) =
F0t
2ω

which grows without bound!

Forced Motion and Resonance Applet

Choose ”Elongation diagram” to see a plot of displacement. Try exciter
frequencies close to ω.

https://www.walter-fendt.de/html5/phen/resonance_en.htm


Example
A 3 kg mass is attached to a spring with spring constant 48 N/m.
Assume damping is negligible and the system is driven by a force
f (t) = F0 cos(γt).

(a) What value of γ would induce pure resonance?

(b) If the object starts from rest from the equilibrium position, find the
displacement in the pure resonance case.







We'll finish this off next time by applying
the initial conditions.


