October 20 Math 2306 sec. 52 Spring 2023

Section 13: Linear Mechanical Equations

Free Motion

If an object of mass m is attached to a flexible spring with spring stiffness k, then the spring force associated with a displacement x (from equilibrium) is given by Hooke's Law

$$
F_{\text {spring }}=k x
$$

If the object is subjected to linear damping (e.g., due to friction or a dashpot) with damping coefficient b, then the damping force is

$$
F_{\text {damping }}=b \frac{d x}{d t}
$$

Free Motion

In the absence of any external forces, the displacement satisfies

$$
m \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+k x=0 .
$$

The corresponding motion is

- undamped if $b=0$,
- over damped if $b^{2}-4 m k>0$,
- critically damped if $b^{2}-4 m k=0$, and
- under damped if $b^{2}-4 m k<0$.
- Over damping corresponds to two distinct real roots.
- Critical damping corresponds to a repeated root (perfect square quadratic).
- Under damping corresponds to complex roots (with nonzero real part).

If the roots are complex with zero real part, the system is undamped, i.e., $b=0$.

Driven Motion

We can consider the application of an external driving force (with or without damping). Assume a time dependent force $f(t)$ is applied to the system. The ODE governing displacement becomes

$$
m \frac{d^{2} x}{d t^{2}}=-b \frac{d x}{d t}-k x+f(t), \quad b \geq 0
$$

Divide out m and let $F(t)=f(t) / m$ to obtain the nonhomogeneous equation

$$
\begin{aligned}
& \frac{d^{2} x}{d t^{2}}+2 \lambda \frac{d x}{d t}+\omega^{2} x=F(t) \\
& \text { where } \quad 2 \lambda=\frac{b}{m}, \quad \omega^{2}=\frac{k}{m}
\end{aligned}
$$

Forced Undamped Motion and Resonance

Consider the case $F(t)=F_{0} \cos (\gamma t)$ or $F(t)=F_{0} \sin (\gamma t)$, and $\lambda=0$. Two cases arise
(1) $\gamma \neq \omega$, and
(2) $\gamma=\omega$.

Taking the sine case, the DE is

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

with complementary solution

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

Note that

$$
x_{c}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t) .
$$

Using the method of undetermined coefficients, the first guess to the particular solution is

$$
x_{p}=A \cos (\gamma t)+B \sin (\gamma t)
$$

suppose $\gamma \neq \omega$
This is correct, it has no like terms in common w) α_{c}. The general solution looks like

$$
x=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)+A \cos (\gamma t)+B \sin (\gamma t)
$$

$$
x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t)
$$

Note that

$$
x_{C}=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)
$$

Using the method of undetermined coefficients, the first guess to the particular solution is

$$
\begin{aligned}
x_{p} & =A \cos (\gamma t)+B \sin (\gamma t) \\
& =A \cos (\omega t)+B \sin (\omega t)
\end{aligned}
$$

Suppose $\gamma=\omega$.
Not correct as it duplicates x_{c}

The correct form is $X_{p}\left(A C_{s}(\omega t)+B \sin (\omega t)\right) t$ The genera solution is

$$
x=c_{1} \cos (\omega t)+c_{2} \sin (\omega t)+A t \cos (\omega t)+B t \sin (\omega t) .
$$

Forced Undamped Motion and Resonance

For $F(t)=F_{0} \sin (\gamma t)$ starting from rest at equilibrium:

Case (1): $\quad x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\gamma t), \quad x(0)=0, \quad x^{\prime}(0)=0$

$$
x(t)=\frac{F_{0}}{\omega^{2}-\gamma^{2}}\left(\sin (\gamma t)-\frac{\gamma}{\omega} \sin (\omega t)\right)
$$

If $\gamma \approx \omega$, the amplitude of motion could be rather large!

Pure Resonance

Case (2): $\quad x^{\prime \prime}+\omega^{2} x=F_{0} \sin (\omega t), \quad x(0)=0, \quad x^{\prime}(0)=0$

$$
x(t)=\frac{F_{0}}{2 \omega^{2}} \sin (\omega t)-\frac{F_{0}}{2 \omega} t \cos (\omega t)
$$

Note that the amplitude, α, of the second term is a function of t :

$$
\alpha(t)=\frac{F_{0} t}{2 \omega}
$$

which grows without bound!

Forced Motion and Resonance Applet

Choose "Elongation diagram" to see a plot of displacement. Try exciter frequencies close to ω.

