October 24 Math 2306 sec. 51 Fall 2022

Section 15: Shift Theorems

We're going to add two theorems that allow us to take Laplace transforms of a wider variety of functions. The first has one row in our table.

Theorem: If $F(s)=\mathscr{L}\{f(t)\}$ and a is any real number, then $F(s-a)=$ $\mathscr{L}\left\{e^{a t} f(t)\right\}$.

The second has three rows in our table and says:

Theorem: If $F(s)=\mathscr{L}\{f(t)\}$ and $a>0$, then $e^{-a s} F(s)=\mathscr{L}\{f(t-$ a) $\mathscr{U}(t-a)\}$, where \mathscr{U} is the unit step function defined by

$$
\mathscr{U}(t-a)= \begin{cases}0, & 0 \leq t<a \\ 1, & t \geq a\end{cases}
$$

Shift (or translation) in s.

Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$. Does it help to know that $\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$?

Note that by definition

$$
\begin{array}{rlrl}
e^{1 t} \mathscr{L}\left\{e^{t} t^{2}\right\} & =\int_{0}^{\infty} e^{-s t} e^{t} t^{2} d t & e^{-s t} \cdot e^{t}=e^{-s t+t} \\
& =\int_{0}^{\infty} e^{-(s-1) t} t^{2} d t & =e^{-(s-1) t} \\
& =\int_{0}^{\infty} e^{\infty} e^{-w t} t^{2} d t=\frac{2!}{w^{3}}=\frac{2!}{(s-1)^{3}}
\end{array}
$$

$\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^{3}}\right\}$
If $f(t)=t^{2}$, then $F(s)=\mathscr{L}\left\{t^{2}\right\}=\frac{2}{s^{3}}$, and

$$
F(s-1)=\frac{2}{(s-1)^{3}}=\mathscr{L}\left\{e^{t} t^{2}\right\} .
$$

In general, if $F(s)=\mathscr{L}\{f(t)\}$, then

$$
\begin{aligned}
F(s-a) & =\int_{0}^{\infty} e^{-(s-a) t} f(t) d t=\int_{0}^{\infty} e^{-s t}\left[e^{a t} f(t)\right] d t \\
& =\mathscr{L}\left\{e^{a t} f(t)\right\}
\end{aligned}
$$

Theorem (translation in s)

Theorem: Suppose $\mathscr{L}\{f(t)\}=F(s)$. Then for any real number a

$$
\mathscr{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

We can state this in terms of the inverse transform. If $F(s)$ has an inverse Laplace transform, then

$$
\mathscr{L}^{-1}\{F(s-a)\}=e^{a t} \mathscr{L}^{-1}\{F(s)\}
$$

Examples: Evaluate

$$
\begin{aligned}
& \text { (a) } \mathscr{L}\left\{t^{6} e^{3 t}\right\}=\frac{6!}{(s-3)^{7}} \\
& \mathscr{L}\left\{t^{6}\right\}=\frac{6!}{s^{7}}=F(s) \quad a=3 \quad F(s-3)
\end{aligned}
$$

(b) $\mathscr{L}\left\{e^{-t} \cos (t)\right\}=\frac{s+1}{(s+1)^{2}+1}$

$$
\mathcal{L}\{\cos t\}=\frac{s}{s^{2}+1^{2}}=F(s) \quad a=-1 \quad F(s-(-1))=F(s+1)
$$

$$
\begin{aligned}
& \text { (c) } \mathscr{L}\left\{e^{-t} \sin (t)\right\}=\frac{1}{(s+1)^{2}+1} \\
& \mathscr{L}\{\sin t\}=\frac{1}{s^{2}+1^{2}}=F(s) \quad a=-1 \quad F(s+1)
\end{aligned}
$$

Inverse Laplace Transforms (completing the square)
(a) $\mathscr{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\}$

Partial fractions doesit apply $s^{2}+2 s+2$ is irreducible. weill complete the square.

$$
\begin{aligned}
s^{2}+2 s+2 & =s^{2}+2 s+1-1+2 \\
& =(s+1)^{2}+1
\end{aligned}
$$

$$
\frac{s}{s^{2}+2 s+2}=\frac{s}{(s+1)^{2}+1}
$$

Note

$$
s=s+1-1
$$

$$
\begin{aligned}
& =\frac{s+1-1}{(s+1)^{2}+1} \\
& =\frac{s+1}{(s+1)^{2}+1}-\frac{1}{(s+1)^{2}+1} \\
\mathcal{L}^{-1}\left\{\frac{s}{s^{2}+2 s+2}\right\} & =\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\}-\mathcal{L}^{\prime}\left\{\frac{1}{(s+1)^{2}+1}\right\} \\
& =e^{-t} \cos t-e^{-t} \sin t \\
\mathcal{L}^{-1}\left\{\frac{s+1}{(s+1)^{2}+1}\right\} & =e^{-1 t} \mathcal{L}^{-1}\left\{\frac{s}{s^{2}+1}\right\}=e^{-t} \cos t
\end{aligned}
$$

