October 24 Math 2306 sec. 52 Fall 2022 Section 15: Shift Theorems

We're going to add two theorems that allow us to take Laplace transforms of a wider variety of functions. The first has one row in our table.

Theorem: If $F(s) = \mathscr{L}{f(t)}$ and *a* is any real number, then $F(s-a) = \mathscr{L}{e^{at}f(t)}$.

The second has three rows in our table and says:

Theorem: If $F(s) = \mathscr{L}{f(t)}$ and a > 0, then $e^{-as}F(s) = \mathscr{L}{f(t - a)\mathscr{U}(t - a)}$, where \mathscr{U} is the unit step function defined by

$$\mathscr{U}(t-a) = \begin{cases} 0, & 0 \le t < a \\ 1, & t \ge a \end{cases}$$

Shift (or translation) in *s*.

Suppose we wish to evaluate $\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^3}\right\}$. Does it help to know that $\mathscr{L}\left\{t^2\right\} = \frac{2}{s^3}$?

Note that by definition

$$\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\begin{array}{l}
\end{array}\\
\end{array}\\
\end{array}\\
\end{array}} &= \int_{0}^{\infty} e^{-st} e^{t} t^{2} dt \\
\end{array} &= \int_{0}^{\infty} e^{-st} e^{t} t^{2} dt \\
\end{array} &= \int_{0}^{\infty} e^{(s-1)t} t^{2} dt \\
\end{array} &= \int_{0}^{\infty} e^{-st} t^{2} dt \\
\end{array} &= \int_{0}^{\infty} e^{-st} t^{2} dt \\
\end{array} &= \int_{0}^{\infty} e^{-st} t^{2} dt \\
\end{array}$$

October 21, 2022 2/28

$$\mathscr{L}^{-1}\left\{\frac{2}{(s-1)^3}\right\}$$

If
$$f(t) = t^2$$
, then $F(s) = \mathscr{L}\left\{t^2\right\} = \frac{2}{s^3}$, and

$$F(s-1) = \frac{2}{(s-1)^3} = \mathscr{L}\left\{e^t t^2\right\}.$$

In general, if $F(s) = \mathscr{L}{f(t)}$, then

$$F(s-a) = \int_0^\infty e^{-(s-a)t} f(t) dt = \int_0^\infty e^{-st} \left[e^{at} f(t) \right] dt$$
$$= \mathscr{L} \left\{ e^{at} f(t) \right\}$$

October 21, 2022 3/28

2

イロト イロト イヨト イヨト

Theorem (translation in s)

Theorem: Suppose $\mathscr{L} \{f(t)\} = F(s)$. Then for any real number a $\mathscr{L} \{e^{at}f(t)\} = F(s-a).$

We can state this in terms of the inverse transform. If F(s) has an inverse Laplace transform, then

$$\mathscr{L}^{-1}\{F(s-a)\}=e^{at}\mathscr{L}^{-1}\{F(s)\}.$$

October 21, 2022

4/28

Examples: Evaluate

(a)
$$\mathscr{L}{t^6 e^{3t}} = \frac{6!}{(s-3)^7}$$

$$\chi(t^{6}) = \frac{G!}{S^{7}} = F(s), a=3 F(s-3)$$

(b)
$$\mathscr{L} \{ e^{-t} \cos(t) \} = \frac{S+1}{(S+1)^2 + 1}$$

 $\mathscr{L} \{ G_{5} t \} = \frac{S}{S^{2} + 1} = F(s) \qquad a = -1 \qquad F(s - (-1)) = F(s + 1)$

(c) $\mathscr{L}\lbrace e^{-t}\sin(t)\rbrace = \frac{1}{(c_{s+1})^2+1}$

$$2\{s_{in}t\} = \frac{1}{s^{2}+1} = F(s)$$

a=-1 F(S+1)

 Inverse Laplace Transforms (completing the square)

(a)
$$\mathscr{L}^{-1}\left\{\frac{s}{s^2+2s+2}\right\}$$

The guadratic s²+2s+2 is Irreducible. Le will complete the square

$$S^{2}+2S+2 = S^{2}+2S+(-) + 2$$

= $(S+1)^{2}+$

$$\frac{S}{s^2 + 2s + 2} = \frac{s}{(s+1)^2 + 1}$$

(□) < 団) < 三) < 三) < 三) < 三) < 三) < ○) </p>
October 21, 2022 6/28

Note

5= 5+1-1

$$= \frac{S+1-1}{(S+1)^{2}+1} = \frac{S+1}{(S+1)^{2}+1} - \frac{1}{(S+1)^{2}+1}$$

$$= \tilde{\mathcal{L}} \left(\frac{S+1}{(S+1)^{2}+1} - \tilde{\mathcal{L}} \left(\frac{1}{(S+1)^{2}+1} \right) - \tilde{\mathcal{L}} \left(\frac{1}{(S+1)^{2}+1} \right)$$

$$= \tilde{e}^{t} C_{s} + - \tilde{e}^{t} S_{s} + t$$

$$\frac{1}{2}\left\{\frac{s+1}{(s+1)^2+1}\right\} = e^{t} \left\{\frac{s}{s^2+1}\right\} = e^{t} G_{s} + \frac{1}{2}\left\{\frac{s}{s^2+1}\right\} = e^{t} G_{s} + \frac{1}{2}\left[\frac{s}{s^2+1}\right] =$$